【BZOJ3831】[Poi2014]Little Bird

Description

In the Byteotian Line Forest there are   trees in a row. On top of the first one, there is a little bird who would like to fly over to the top of the last tree. Being in fact very little, the bird might lack the strength to fly there without any stop. If the bird is sitting on top of the tree no.  , then in a single flight leg it can fly to any of the trees no.i+1,i+2…I+K, and then has to rest afterward.
Moreover, flying up is far harder to flying down. A flight leg is tiresome if it ends in a tree at least as high as the one where is started. Otherwise the flight leg is not tiresome.
The goal is to select the trees on which the little bird will land so that the overall flight is least tiresome, i.e., it has the minimum number of tiresome legs. We note that birds are social creatures, and our bird has a few bird-friends who would also like to get from the first tree to the last one. The stamina of all the birds varies, so the bird's friends may have different values of the parameter  . Help all the birds, little and big!
有一排n棵树,第i棵树的高度是Di。
MHY要从第一棵树到第n棵树去找他的妹子玩。
如果MHY在第i棵树,那么他可以跳到第i+1,i+2,...,i+k棵树。
如果MHY跳到一棵不矮于当前树的树,那么他的劳累值会+1,否则不会。
为了有体力和妹子玩,MHY要最小化劳累值。

Input

There is a single integer N(2<=N<=1 000 000) in the first line of the standard input: the number of trees in the Byteotian Line Forest. The second line of input holds   integers D1,D2…Dn(1<=Di<=10^9) separated by single spaces: Di is the height of the i-th tree.
The third line of the input holds a single integer Q(1<=Q<=25): the number of birds whose flights need to be planned. The following Q lines describe these birds: in the i-th of these lines, there is an integer Ki(1<=Ki<=N-1) specifying the i-th bird's stamina. In other words, the maximum number of trees that the i-th bird can pass before it has to rest is Ki-1.

Output

Your program should print exactly Q lines to the standard output. In the I-th line, it should specify the minimum number of tiresome flight legs of the i-th bird.

Sample Input

9
4 6 3 6 3 7 2 6 5
2
2
5

Sample Output

2
1

HINT

Explanation: The first bird may stop at the trees no. 1, 3, 5, 7, 8, 9. Its tiresome flight legs will be the one from the 3-rd tree to the 5-th one and from the 7-th to the 8-th.

题解:根据题意,我们很容易得出下面的转移方程

1.f[i]=min(f[j]+1)  ( i-k≤j<i )
2.f[i]=min(f[j])      ( i-k≤j<i &&h[j]>h[i])

发现上面那个东西用单调队列直接搞定,但下面那个不太好搞。不过发现由于h[j]>h[i]对答案的贡献至多为1,所以原来如果f[j]<f[j'],那么算上h[j]和h[j']的影响后j仍然不会比j'更差,于是直接维护一个f递增的单调队列,其中当f相同的时候使h递减就行了

#include <cstdio>
#include <iostream>
#include <cstring>
const int maxn=1000010;
using namespace std;
int f[maxn],q[maxn],x[maxn],h,t,n,m,k;
void work()
{
int i,j;
q[1]=1,h=t=1,f[1]=0;
for(i=2;i<=n;i++)
{
while(h<=t&&i-q[h]>k) h++;
f[i]=f[q[h]]+(x[q[h]]<=x[i]);
while(h<=t&&(f[q[t]]>f[i]||(f[q[t]]==f[i]&&x[q[t]]<=x[i]))) t--;
q[++t]=i;
}
printf("%d\n",f[n]);
}
int main()
{
scanf("%d",&n);
int i;
for(i=1;i<=n;i++) scanf("%d",&x[i]);
scanf("%d",&m);
for(i=1;i<=m;i++)
{
scanf("%d",&k);
work();
}
return 0;
}

【BZOJ3831】[Poi2014]Little Bird 单调队列的更多相关文章

  1. bzoj3831 [Poi2014]Little Bird 单调队列优化dp

    3831: [Poi2014]Little Bird Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 505  Solved: 322[Submit][ ...

  2. 【bzoj3831】[Poi2014]Little Bird 单调队列优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6826475.html 题目描述 In the Byteotian Line Forest there are   t ...

  3. luogu P3572 [POI2014]PTA-Little Bird |单调队列

    从1开始,跳到比当前矮的不消耗体力,否则消耗一点体力,每次询问有一个步伐限制,求每次最少耗费多少体力 #include<cstdio> #include<cstring> #i ...

  4. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  5. 【单调队列】【动态规划】bzoj3831 [Poi2014]Little Bird

    f(i)=min{f(j)+(D(j)<=D(i))} (max(1,i-k)<=j<=i) 有两个变量,很难用单调队列,但是(引用): 如果fi<fj,i一定比j优秀.因为如 ...

  6. BZOJ3831 : [Poi2014]Little Bird

    设f[i]表示到i最少休息次数,f[i]=min(f[j]+(h[j]<=a[i])),i-k<=j<i,单调队列优化DP #include<cstdio> #defin ...

  7. 洛谷 P3580 - [POI2014]ZAL-Freight(单调队列优化 dp)

    洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置 ...

  8. [luogu]P3572 [POI2014]PTA-Little Bird(单调队列)

    P3572 [POI2014]PTA-Little Bird 题目描述 In the Byteotian Line Forest there are nn trees in a row. On top ...

  9. 单调队列优化DP || [Poi2014]Little Bird || BZOJ 3831 || Luogu P3572

    题面:[POI2014]PTA-Little Bird 题解: N<=1e6 Q<=25F[i]表示到达第i棵树时需要消耗的最小体力值F[i]=min(F[i],F[j]+(D[j]> ...

随机推荐

  1. AndroidStudio项目提交(更新)到github最具体步骤

    在使用studio开发的项目过程中有时候我们想将项目公布到github上.曾经都是用一种比較麻烦的方式(cmd)进行提交.近期发现studio事实上是自带这样的功能的,最终能够摆脱命令行了. 由于自己 ...

  2. js身份证验证算法

    var validateIdCard=function (id, backInfo) { var info={ y: "1900", m: "01", d: & ...

  3. Linux 用 shell 脚本 批量 导入 csv 文件 到 mysql 数据库

    前提: 每个csv文件第一行为字段名 创建的数据库字段名同csv 文件的字段名 1. 批量导入 多个 csv 文件 for file in ./*.csv;do mv $file tablename. ...

  4. Eclipse中导入JDK类库的源代码以及添加指定的API

    一.在Eclipse中导入JDK类库的源代码 操作步骤: 打开eclipse->“window”-> “Preferences” -> “Java” -> “Installed ...

  5. xa

    题目描述把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法.输入每个用例包含二个整数M和N.0<=m<=1 ...

  6. 自己定义TextView 调用ttf格式字体

    方法一:自己定义TextView 调用ttf格式字体 <strong>将ttf格式文件存放在assets/fonts/下</strong> 注:PC系统字体存放在C:\Wind ...

  7. 【转】shell pipe与输入输出重定向的区别

    http://www.cnblogs.com/chengmo/archive/2010/10/21/1856577.html

  8. 在无法单步调试的情况下找Bug的技巧

    比如说你有一个大的模块A,其组成部分有B,C,D这3个小的模块,现在A出了一个BUG,因为某种原因的限制你无法单步调试.怎么较快地定位BUG发生的根源? 这里记录一下刚才我在找BUG的时候采用的思路, ...

  9. 在容器中使用erase函数,迭代器的处理

    在c++编程中,用到迭代器的时候,往往不知道如何删除当前迭代器指向的元素. erase函数:   返回下一个迭代器. 只使用vector的erase函数,记住,该函数是迭代器失效,返回下一个迭代器. ...

  10. 基于jQuery动画二级下拉导航菜单

    春节回来给大家分享一款基于jQuery动画二级下拉导航菜单.鼠标经过的时候以动画的形式出现二级导航.效果图如下: 在线预览   源码下载 实现的代码. html代码: <div id=" ...