POJ 3384 Feng Shui (半平面交)
| Time Limit: 2000MS | Memory Limit: 65536K | |||
| Total Submissions: 3743 | Accepted: 1150 | Special Judge | ||
Description
Feng shui is the ancient Chinese practice of placement and arrangement of space to achieve harmony with the environment. George has recently got interested in it, and now wants to apply it to his home and bring harmony to it.
There is a practice which says that bare floor is bad for living area since spiritual energy drains through it, so George purchased two similar round-shaped carpets (feng shui says that straight lines and sharp corners must be avoided). Unfortunately, he is unable to cover the floor entirely since the room has shape of a convex polygon. But he still wants to minimize the uncovered area by selecting the best placing for his carpets, and asks you to help.
You need to place two carpets in the room so that the total area covered by both carpets is maximal possible. The carpets may overlap, but they may not be cut or folded (including cutting or folding along the floor border) — feng shui tells to avoid straight lines.
Input
The first line of the input file contains two integer numbers n and r — the number of corners in George’s room (3 ≤ n ≤ 100) and the radius of the carpets (1 ≤ r ≤ 1000, both carpets have the same radius). The following n lines contain two integers xi and yi each — coordinates of the i-th corner (−1000 ≤ xi, yi ≤ 1000). Coordinates of all corners are different, and adjacent walls of the room are not collinear. The corners are listed in clockwise order.
Output
Write four numbers x1, y1, x2, y2 to the output file, where (x1, y1) and (x2, y2) denote the spots where carpet centers should be placed. Coordinates must be precise up to 4 digits after the decimal point.
If there are multiple optimal placements available, return any of them. The input data guarantees that at least one solution exists.
Sample Input
| #1 | 5 2 -2 0 -5 3 0 8 7 3 5 0 |
|---|---|
| #2 | 4 3 0 0 0 8 10 8 10 0 |
Sample Output
| #1 | -2 3 3 2.5 |
|---|---|
| #2 | 3 5 7 3 |
Hint

Source
给你两个圆,半径相等,求放在一个凸多边形里两个圆不碰到边界的圆心。两个圆是可以重叠的。
半平面交,向内推进R,然后求组成多边形的最远的两个点即可。
/* ***********************************************
Author :kuangbin
Created Time :2013/8/18 15:52:28
File Name :F:\2013ACM练习\专题学习\计算几何\半平面交\POJ3384.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const double eps = 1e-;
const double PI = acos(-1.0);
int sgn(double x)
{
if(fabs(x) < eps) return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x; y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x, y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
double k;
Line(){}
Line(Point _s,Point _e)
{
s = _s; e = _e;
k = atan2(e.y - s.y,e.x - s.x);
}
Point operator &(const Line &b)const
{
Point res = s;
double t = ((s - b.s)^(b.s - b.e))/((s - e)^(b.s - b.e));
res.x += (e.x - s.x)*t;
res.y += (e.y - s.y)*t;
return res;
}
};
//半平面交,直线的左边代表有效区域
bool HPIcmp(Line a,Line b)
{
if(fabs(a.k - b.k) > eps)return a.k < b.k;
return ((a.s - b.s)^(b.e - b.s)) < ;
}
Line Q[];
void HPI(Line line[], int n, Point res[], int &resn)
{
int tot = n;
sort(line,line+n,HPIcmp);
tot = ;
for(int i = ;i < n;i++)
if(fabs(line[i].k - line[i-].k) > eps)
line[tot++] = line[i];
int head = , tail = ;
Q[] = line[];
Q[] = line[];
resn = ;
for(int i = ; i < tot; i++)
{
if(fabs((Q[tail].e-Q[tail].s)^(Q[tail-].e-Q[tail-].s)) < eps || fabs((Q[head].e-Q[head].s)^(Q[head+].e-Q[head+].s)) < eps)
return;
while(head < tail && (((Q[tail]&Q[tail-]) - line[i].s)^(line[i].e-line[i].s)) > eps)
tail--;
while(head < tail && (((Q[head]&Q[head+]) - line[i].s)^(line[i].e-line[i].s)) > eps)
head++;
Q[++tail] = line[i];
}
while(head < tail && (((Q[tail]&Q[tail-]) - Q[head].s)^(Q[head].e-Q[head].s)) > eps)
tail--;
while(head < tail && (((Q[head]&Q[head-]) - Q[tail].s)^(Q[tail].e-Q[tail].e)) > eps)
head++;
if(tail <= head + )return;
for(int i = head; i < tail; i++)
res[resn++] = Q[i]&Q[i+];
if(head < tail - )
res[resn++] = Q[head]&Q[tail];
}
Point p[];
Line line[];
//*两点间距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
void change(Point a,Point b,Point &c,Point &d,double p)//将线段ab往左移动距离p
{
double len = dist(a,b);
double dx = (a.y - b.y)*p/len;
double dy = (b.x - a.x)*p/len;
c.x = a.x + dx; c.y = a.y + dy;
d.x = b.x + dx; d.y = b.y + dy;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
double r;
while(scanf("%d%lf",&n,&r) == )
{
for(int i = ;i < n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
reverse(p,p+n);
for(int i = ;i < n;i++)
{
Point t1,t2;
change(p[i],p[(i+)%n],t1,t2,r);
line[i] = Line(t1,t2);
}
int resn;
HPI(line,n,p,resn);
int res1 = , res2 = ;
for(int i = ;i < resn;i++)
for(int j = i;j < resn;j++)
if(dist(p[i],p[j]) > dist(p[res1],p[res2]))
res1 = i, res2 = j;
printf("%.5f %.5f %.5f %.5f\n",p[res1].x,p[res1].y,p[res2].x,p[res2].y);
}
return ;
}
POJ 3384 Feng Shui (半平面交)的更多相关文章
- POJ 3384 Feng Shui 半平面交
题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...
- poj 3384 Feng Shui (Half Plane Intersection)
3384 -- Feng Shui 构造半平面交,然后求凸包上最远点对. 这题的题意是给出一个凸多边形区域,要求在其中放置两个半径为r的圆(不能超出凸多边形区域),要求求出两个圆心,使得多边形中没有被 ...
- POJ 3384 Feng Shui
http://poj.org/problem?id=3384 题意:给一个凸包,求往里面放两个圆(可重叠)的最大面积时的两个圆心坐标. 思路:先把凸包边往内推R,做半平面交,然后做旋转卡壳,此时得到最 ...
- POJ 3384 Feng Shui(计算几何の半平面交+最远点对)
Description Feng shui is the ancient Chinese practice of placement and arrangement of space to achie ...
- POJ 3384 Feng Shui 凸包直径 + 半平面交
G++一直没有过了 换成 C++果断A掉了...It's time to bet RP. 题意:给一个多边形,然后放进去两个圆,让两个圆的覆盖面积尽量最大,输出两个圆心的坐标. 思路:将多边形的边向里 ...
- poj 3335 Rotating Scoreboard - 半平面交
/* poj 3335 Rotating Scoreboard - 半平面交 点是顺时针给出的 */ #include <stdio.h> #include<math.h> c ...
- POJ 3384 Feng Shui --直线切平面
题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大. 解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠 ...
- POJ 2540 Hotter Colder --半平面交
题意: 一个(0,0)到(10,10)的矩形,目标点不定,从(0,0)开始走,如果走到新一点是"Hotter",那么意思是离目标点近了,如果是"Colder“,那么就是远 ...
- POJ 3384 Feng Shui(半平面交向内推进求最远点对)
题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...
随机推荐
- 设计模式之笔记--解释器模式(Interpreter)
解释器模式(Interpreter) 定义 解释器模式(Interpreter),给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 类图 描述 Expr ...
- python使用virtualenv
virtualenv是python的虚拟环境,可以同时存在多个不同的虚拟环境. #1.安装virtualenv pip install virtualenv #2.创建目录 mkdir myproje ...
- zookeeper客户端连接报错
[root@zoo1 zookeeper-3.4.10]# bin/zkCli.sh -server 172.16.1.10:2181 2017-10-27 00:37:59,326 [myid:] ...
- JS函数学习
=============数学函数========== 1.Math.random()为取随机数0~1之间的:0可以取到,1取不到 alert(Math.random()); 2.Math.PI为3. ...
- python中调用cmd
1. 使用os.system("cmd") 这是最简单的一种方法,特点是执行的时候程序会打出cmd在linux上执行的信息.使用前需要import os. os.system(&q ...
- [实战]MVC5+EF6+MySql企业网盘实战(13)——编辑文件夹
写在前面 上篇文章实现了,新建文件夹以及与之前的上传文件的逻辑做了集成,本篇文章将实现编辑文件夹名称,其实这个也有难点,就是编辑文件夹名称时,要考虑文件夹中存在文件或者子文件夹的情况,因为他们的路径已 ...
- 记一次ceph集群的严重故障
问题:集群状态,坏了一个盘,pg状态好像有点问题[root@ceph-1 ~]# ceph -s cluster 72f44b06-b8d3-44cc-bb8b-2048f5b4acfe ...
- Xpath,XQuery,DTD
一.Xpath XPath 是一门在 XML 文档中查找信息的语言;XPath 是 XSLT 中的主要元素.XPath是W3C标准.1.七种类型节点:元素.属性.文本.命名空间.处理指令.注释.文档节 ...
- info.plist文件里面添加描述 -> 配置定位,相册等
<key>NSAppleMusicUsageDescription</key> <string>App需要您的同意,才能访问媒体资料库</string> ...
- VideoView视频缓冲进度条
效果图: 需求: 刚进入视频播放页时,屏幕中间有加载进度条 视频播放过程中,视频界面不动了,正在缓冲时,屏幕中间有加载进度条 private ObjectAnimator rotate; ImageV ...