IEEEXtreme 10.0 - Checkers Challenge
这是 meelo 原创的 IEEEXtreme极限编程大赛题解
Xtreme 10.0 - Checkers Challenge
题目来源 第10届IEEE极限编程大赛
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/draughts-1
Watch the following YouTube video clip. Your task is to compute the number of possible ways the white player can win from an opening state of a single white piece in a game of Turkish Draughts. For more information on the game, you can view the Wikipedia page.
For this challenge, we will use the following variation on the official rules:
The black pieces can be arbitrary placed, and will not necessarily be located at places reachable in a legal game
A single white piece is a king if, and only if, it is placed in or reaches the top most line. Once a piece is a king it remains a king throughout.
A white piece can capture by jumping over a single black piece to the left, right or upwards, landing in the adjacent square
A white king can capture by jumping left, right, upwards or backwards and can skip arbitrary number of blank squares before and after the black piece
After capturing a black piece, the white piece (or king) must turn 90 degrees or keep moving in the same direction (no 180 degree turns are allowed).
We ask for the number of different ways the white player can win a single move. White wins by capturing all black pieces.
Input Format
Each input begins with an integer t, on a line by itself, indicating how many testcases are present.
Each testcase will contain 8 lines with the state of the board. The board will have a single white piece o, some black pieces x, and empty places .. White's side of the board is at the bottom of the board. So if the white piece were to reach to top row of the board, it would become a king.
In between each testcase is a blank line.
Constraints
1 ≤ t ≤ 5
There will always be at least 1, and no more than 16, black pieces in each game.
The game board will always be 8x8 squares in size.
Output Format
For each testcase, output, on a line by itself, the number of possible ways the white can win, or 0 if he cannot.
Sample Input
3
.......o
.x.x.x..
xxxx.xx.
........
........
.x.xx..x
x.......
..x...x.
........
........
....o...
........
....x...
........
........
........
...o....
........
...x....
........
........
........
........
........
Sample Output
12
0
5
Explanation
The first testcase is the state of the board in the 56th second of the YouTube video. There are 12 ways in which this game can be won. These ways are represented below:
down 7, left 3, up 6, left 2, down 4, right 4, up 4, left 3, down 4, left 3, up 4, right 5, down 6, left 5, up 5, right 2
down 7, left 3, up 6, left 2, down 4, right 4, up 4, left 3, down 4, left 3, up 4, right 5, down 6, left 5, up 5, right 3
down 7, left 3, up 6, left 2, down 4, right 4, up 4, left 3, down 4, left 3, up 4, right 5, down 6, left 5, up 5, right 4
down 7, left 3, up 6, left 2, down 4, right 4, up 4, left 3, down 4, left 3, up 4, right 5, down 6, left 5, up 5, right 5
down 7, left 3, up 6, left 2, down 4, right 4, up 4, left 3, down 4, left 3, up 4, right 5, down 6, left 5, up 5, right 6
down 7, left 3, up 6, left 2, down 4, right 4, up 4, left 3, down 4, left 3, up 4, right 5, down 6, left 5, up 5, right 7
down 7, left 3, up 6, right 2, down 4, left 4, up 4, right 3, down 4, left 5, up 4, right 3, down 6, left 3, up 5, right 2
down 7, left 3, up 6, right 2, down 4, left 4, up 4, right 3, down 4, left 5, up 4, right 3, down 6, left 3, up 5, right 3
down 7, left 3, up 6, right 2, down 4, left 4, up 4, right 3, down 4, left 5, up 4, right 3, down 6, left 3, up 5, right 4
down 7, left 3, up 6, right 2, down 4, left 4, up 4, right 3, down 4, left 5, up 4, right 3, down 6, left 3, up 5, right 5
down 7, left 3, up 6, right 2, down 4, left 4, up 4, right 3, down 4, left 5, up 4, right 3, down 6, left 3, up 5, right 6
down 7, left 3, up 6, right 2, down 4, left 4, up 4, right 3, down 4, left 5, up 4, right 3, down 6, left 3, up 5, right 7
There is no way for white to win the second testcase.
For the final testcase, white has a king, and white can capture the single black piece, and land on any of the five spaces below the piece.
题目解析
这题是一个搜索题,用深度优先搜索可以解决。
题目中的游戏规则比较复杂,一定要仔细阅读。最初没有注意到,普通白子不能向下走,浪费了很多时间。
使用回溯法可以避免保存状态。
程序
C++
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
// check whether (x,y) is a legal location
bool legal(int x, int y) {
return (x>=) && (x<) && (y>=) && (y<);
}
/**
board: 8x8 array representing the game board
isKing: whether white piece is king
wx: white piece's location on x axis
wy: white piece's location on y axis
lastDir: direction of last move, valid value are -1, 0, 1, 2, 3, -1 represents initial move
numBlack: number of black pieces on board
*/
int countWin(char board[][], bool isKing, int wx, int wy, int lastDir, int numBlack) {
int count = ; // game over, white piece win
if(numBlack == ) return ; int dir[][] = { {,}, {,-}, {-,}, {,} };
int bx, by; // black piece to the left, right or upwards
int sx, sy; // landing square if(!isKing) {
// cannot go downwards, possible directions: 0, 1, 2
for(int d=; d<; d++) { bx = wx + dir[d][];
by = wy + dir[d][];
sx = wx + dir[d][] * ;
sy = wy + dir[d][] * ; if(board[bx][by]=='x' && legal(sx, sy) && board[sx][sy]=='.') {
if(sx == ) isKing = true;
board[bx][by] = '.';
numBlack--;
count += countWin(board, isKing, sx, sy, d, numBlack);
// backtrack
board[bx][by] = 'x';
numBlack++;
}
}
}
else {
for(int d=; d<; d++) {
if((d== && lastDir==) || (d== && lastDir==) ||
(d== && lastDir==) || (d== && lastDir==)) {
continue;
}
bx = by = -;
// white king can go at least 1 step, at most 6 steps
for(int skipBefore=; skipBefore<=; skipBefore++) {
int tx = wx + dir[d][] * skipBefore;
int ty = wy + dir[d][] * skipBefore;
if(legal(tx, ty) && board[tx][ty]=='x') {
bx = tx;
by = ty;
break;
}
}
//cout << bx << ' ' << by << endl;
if(!legal(bx, by)) continue;
for(int skipAfter=; skipAfter<=; skipAfter++) {
int tx = bx + dir[d][] * skipAfter;
int ty = by + dir[d][] * skipAfter;
if(legal(tx, ty) && board[tx][ty]=='.') {
board[bx][by] = '.';
numBlack--;
int C = countWin(board, isKing, tx, ty, d, numBlack);
count += C;
// backtrack
board[bx][by] = 'x';
numBlack++;
}
else {
break;
} }
}
} return count;
} int main() {
int T;
cin >> T;
for(int t=; t<T; t++) {
char board[][];
for(int l=; l<; l++) {
cin >> board[l];
} // check whether white piece is king or not
bool isKing = false;
for(int c=; c<; c++) {
if(board[][c] == 'o') isKing = true;
} // locate white piece
int wx, wy, numBlack = ;
for(int l=; l<; l++) {
for(int c=; c<; c++) {
if(board[l][c] == 'o') {
wx = l;
wy = c;
board[l][c] = '.';
}
else if(board[l][c] == 'x') {
numBlack++;
}
}
}
cout << countWin(board, isKing, wx, wy, -, numBlack) << endl;
getchar();
}
return ;
}
博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址
IEEEXtreme 10.0 - Checkers Challenge的更多相关文章
- IEEEXtreme 10.0 - Inti Sets
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...
- IEEEXtreme 10.0 - Painter's Dilemma
这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...
- IEEEXtreme 10.0 - Mysterious Maze
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...
- IEEEXtreme 10.0 - Ellipse Art
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...
- IEEEXtreme 10.0 - Counting Molecules
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Game of Stones
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Game of Stones 题目来源 第10届IEEE极限编程大赛 https://www.hackerr ...
- IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...
- IEEEXtreme 10.0 - Full Adder
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...
- IEEEXtreme 10.0 - N-Palindromes
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...
随机推荐
- 专题训练之LCA
推荐几个博客:https://www.cnblogs.com/JVxie/p/4854719.html Tarjan离线算法的基本思路及其算法实现 https://blog.csdn.net/shah ...
- Struts初探(二)
总是找不到对应的action,但别的没用到动态方法调用的都没有问题. 报异常:java.lang.reflect.InvocationTargetException - Class: com.open ...
- Jenkins+SVN+Maven发布项目
一.安装jenkins插件 登入Jenkis后,安装几个插件: Maven Integration plugin # 没有这个插件,不能创建maven项目 Subversion Plug-in Pub ...
- Java SE/EE/ME概念理解(Java版本发展历史)
继上一篇文章http://www.cnblogs.com/EasonJim/p/6181981.html中说的区别,其实分析的不够彻底,因此再次在这里做详细的分析. 零.Java与Sun.Oracle ...
- 使用git拉取github上的项目
一. 安装Git 去Git官网,下载安装包,一路点next,默认安装. 安装之后,在空白处右键,菜单显示有 Git GUI Here 和 Git Bash Here ,表示Git安装成功. 二. 配置 ...
- Linux centos7下设置Tomcat开机自启动
1,centos7 使用 systemctl 替换了 service命令 参考:redhat文档: https://access.redhat.com/documentation/en-US/Red_ ...
- 图论&动态规划:虚树
虚树可以看做是对树形动态规划的一种求解优化 对于需要求答案的点p,只保留对答案有影响的节点,从而减少时间 BZOJ2286 dp[i]=min(val[i],Σdp[j](j为i的儿子)),val[i ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
- JVM调优总结(5):典型配置
以下配置主要针对分代垃圾回收算法而言. 堆大小设置 年轻代的设置很关键 JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理 ...
- Centos tomcat jmx 远程连接
jmx配置: -Dcom.sun.management.jmxremote-Dcom.sun.management.jmxremote.authenticate=false-Dcom.sun.mana ...