BZOJ 1257 - 余数之和 - [CQOI2007]
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257
题意:
给定正整数 $n,k$,求 $(k \bmod 1) + (k \bmod 2) + \cdots + (k \bmod n) = \sum_{i=1}^{n}(k \bmod i)$ 的值。
题解:
显然 $k \bmod i = k - \lfloor k/i \rfloor \times i$,因此 $\sum_{i=1}^{n}(k \bmod i) = \sum_{i=1}^{n}(k - \lfloor k/i \rfloor \times i) = n \cdot k - \sum_{i=1}^{n}(\lfloor k/i \rfloor \times i)$。
对于任意正整数 $x \in [1,k]$, 设 $g(x) = \lfloor \frac{k}{\lfloor k/x \rfloor} \rfloor$,不难得出 $\lfloor k/x \rfloor \le k/x \Rightarrow \frac{k}{\lfloor k/x \rfloor} \ge \frac{k}{k/x} \Rightarrow \lfloor \frac{k}{\lfloor k/x \rfloor} \rfloor \ge \lfloor \frac{k}{k/x} \rfloor$,即 $g(x) \ge \lfloor \frac{k}{k/x} \rfloor = \lfloor x \rfloor = x$。
又根据 $f(x) = \frac{k}{x}$ 是一个单调递减函数,得到
$f(g(x)) \le f(x) \Rightarrow \frac{k}{g(x)} \le \frac{k}{x} \Rightarrow \lfloor \frac{k}{g(x)} \rfloor \le \lfloor \frac{k}{x} \rfloor$
另一方面,根据 $g(x) \le \frac{k}{\lfloor k/x \rfloor}$ 还能得出

因此,综上可以得出 $\lfloor \frac{k}{g(x)} \rfloor = \lfloor \frac{k}{x} \rfloor$;也就是说,对于任意的正整数 $i \in [x,g(x)]$,$\lfloor \frac{k}{i} \rfloor$ 都是相等的。
而与此同时,对于任意的正整数 $i \in [1,k]$,$\lfloor \frac{k}{i} \rfloor$ 的值最多只有 $2 \sqrt{k}$ 个,这是因为:
当 $i \le \sqrt{k}$ 时,$i$ 最多只有 $\sqrt{k}$ 个选择,相对应地,$\lfloor \frac{k}{i} \rfloor$ 也就最多 $\sqrt{k}$ 个值;而当 $i > \sqrt{k}$ 时,$\lfloor \frac{k}{i} \rfloor \le \frac{k}{i} < \sqrt{k}$,即 $\lfloor \frac{k}{i} \rfloor$ 只能取 $1 \sim \sqrt{k}$ 之间的值。
所以,对于任意的正整数 $i \in [1,k]$,$\lfloor \frac{k}{i} \rfloor$ 的值划分成 $O(\sqrt{k})$ 段。每一段上 $i \in [x,g(x)]$,$\lfloor \frac{k}{i} \rfloor$ 的值都等于 $\lfloor \frac{k}{x} \rfloor$。而在这一段中,$\sum_{i=x}^{g(x)}(\lfloor k/i \rfloor \times i) = \lfloor k/x \rfloor \sum_{i=x}^{g(x)}i$,即一个等差数列的求和。因此这个算法时间复杂度为 $O(\sqrt{k})$。
AC代码:
/**************************************************************
Problem: 1257
User: Dilthey
Language: C++
Result: Accepted
Time:20 ms
Memory:1288 kb
****************************************************************/ #include<bits/stdc++.h>
using namespace std;
typedef long long ll; ll n,k,ans;
inline ll g(ll x){return k/(k/x);}
inline ll sum(ll L,ll R){return (L+R)*(R-L+)/;}
int main()
{
while(cin>>n>>k)
{
ll ans=n*k;
n=min(n,k);
for(ll x=;x<=n;x=g(x)+)
{
ll y=min(g(x),n);
ans-=(k/x)*sum(x,y);
}
cout<<ans<<endl;
}
}
BZOJ 1257 - 余数之和 - [CQOI2007]的更多相关文章
- BZOJ - 1257 余数之和(数学)
题目链接:余数之和 题意:给定正整数$n$和$k$,计算$k\%1+k\%2+\dots+k\%n$的值 思路:因为$k\%i=k-\left \lfloor \frac{k}{i} \right \ ...
- BZOJ 1257 余数之和
Description 给出正整数\(n\)和\(k\),计算\(j(n, k)=k\;mod\;1\;+\;k\;mod\;2\;+\;k\;mod\;3\;+\;-\;+\;k\;mod\;n\) ...
- BZOJ 1257 余数之和sum
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1257 题意:计算sigama(m%i)(1<=i<=n). 思路: 这样就简 ...
- [bzoj] 1257 余数之和sum || 数论
原题 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值,其中k mod i表示k除以i的余数. \(\sum^n_{i=1} ...
- bzoj 1257 余数之和 —— 数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( \sum\limits_{i=1}^{n}k\%i = \sum\limits_ ...
- BZOJ 1257 余数之和 题解
题面 这道题是一道整除分块的模板题: 首先,知道分块的人应该知道,n/i最多有2*sqrt(n)种数,但这和余数有什么关系呢? 注意,只要n/i的值和n/(i+d)的值一样,那么n%i到n%(i+d) ...
- BZOJ 1257 余数之和sum(分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=46954 题意:f(n, k)=k mod 1 + k mod 2 ...
- 【BZOJ1257】【CQOI2007】余数之和sum
Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, ...
- Bzoj 1257 [CQOI2007]余数之和 (整除分块)
Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...
随机推荐
- Codeforces 1097G
根本想不到 CF1097G 题意 给出一棵树,定义f(S)为用最少的边连通点集$ S$的边数 求$ \sum\limits f(S)^k$ $ n \leq 10^5 k \leq 200$ 题解 假 ...
- 410 for 循环 运算 改变循环的控制流 死循环 遍历数组 定义方法 有名函数匿名函数 定义函数的方法取值 date math 局部变量 函数 局部与全局变量 次幂/随机数/取绝对值/向上取整/平方根
for(1.表达式1;2.表达式2;3.表达式3){ 4.循环体语句; } 先执行1 ,在执行2, 表达式, 如果2结果为false,退出循环 如果2是true 执行4 在执行3 执行2 举例打印1- ...
- SpringBoot使用Redis共享用户session信息
SpringBoot引入Redis依赖: <dependency> <groupId>org.springframework.boot</groupId> < ...
- 可持久化 trie 的简单入门
可持久化 $trie$ ....又是一个表里不一的东西..... 可持久化 $trie$ 的介绍: 和主席树类似的,其实可持久化就是体现在前缀信息的维护上(搞不懂这怎么就叫做可持久化了...) $ ...
- C++设计模式——职责链模式
什么是职责链模式? 在GOF的<设计模式:可复用面向对象软件的基础>一书中对职责链模式是这样说的:使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系.将这些对象连成一条 ...
- docker镜像的使用及相关
参考网站docker中文网:http://www.docker.org.cn/book/docker/docker-push-image-13.html 1.搜索容器: docker search t ...
- Google Android SDK开发范例大全笔记 一
方法讲解 1 获取手机分辨率方法 DisplayMetrics private void getDiaplayMetrics() { DisplayMetrics dm = new DisplayMe ...
- MySql新增表的字段,删除表字段
1增加两个字段: create table id_name(id int,name varchar(20));//创建原始数据表 alter table id_name add age int,add ...
- Accumulation Degree
#include<cstdio> #include<cstring> #define INF 0x7fffffff using namespace std; ; inline ...
- Main Thread Checker 问题解决
1. without a return value https://developer.apple.com/documentation/code_diagnostics/main_thread_che ...