PIGS
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 20579   Accepted: 9387

Description

Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs. 
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses. 
An unlimited number of pigs can be placed in every pig-house. 
Write a program that will find the maximum number of pigs that he can sell on that day.

Input

The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

Output

The first and only line of the output should contain the number of sold pigs.

Sample Input

3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6

Sample Output

7

Source

[Submit]   [Go Back]   [Status]   [Discuss]

网络流——流量传递类型。

四月份的时候曾经写过一遍,但是已然忘光了,所以只得重新来过。

错误的建图方法

看到题之后有个简单的建图想法,就是设立M*N个猪圈点,以及N个商人点,如下建图:

源点向第一排M个猪圈点连容量为初始猪数目的边,代表一开始猪圈中最多存在的猪。

每排M个猪圈点中,A个能被打开的猪圈点向商人点连容量为无穷的边,代表可以被打开。

每排的商人点向汇点连容量为商人购买数目B的边,表示这个人的最大购买限度。

每排的商人点向下一排的A个点(这A个点还是本排商人能打开的猪圈)连无穷边,代表猪可以自由转移。

当然,因为猪也可以待在猪圈里不动,所以每排的各个猪圈向下一排的该猪圈连无穷边。

这样跑最大流,显然可以得到最优解,但是点的数量是O(N*M)的,而边的数量是……(懒得想了),果不其然地TLE了。

#include <cstdio>
#include <cstring> inline int get_c(void)
{
static const int siz = ; static char buf[siz];
static char *head = buf + siz;
static char *tail = buf + siz; if (head == tail)
fread(head = buf, , siz, stdin); return *head++;
} inline int get_i(void)
{
register int ret = ;
register int neg = false;
register int bit = get_c(); for (; bit < ; bit = get_c())
if (bit == '-')neg ^= true; for (; bit > ; bit = get_c())
ret = ret * + bit - ; return neg ? -ret : ret;
} template <class T>
inline T min(T a, T b)
{
return a < b ? a : b;
} const int inf = 2e9;
const int maxn = ; int n, m;
int s, t;
int edges;
int hd[maxn];
int to[maxn];
int nt[maxn];
int fl[maxn]; inline void add(int u, int v, int f)
{ //printf("add %d %d %d\n", u, v, f);
nt[edges] = hd[u]; to[edges] = v; fl[edges] = f; hd[u] = edges++;
nt[edges] = hd[v]; to[edges] = u; fl[edges] = ; hd[v] = edges++;
} int dep[maxn]; inline bool bfs(void)
{
static int que[maxn];
static int head, tail; memset(dep, , sizeof(dep));
head = , tail = ;
que[tail++] = s;
dep[s] = ; while (head != tail)
{
int u = que[head++], v;
for (int i = hd[u]; ~i; i = nt[i])
if (!dep[v = to[i]] && fl[i])
{
dep[v] = dep[u] + ;
que[tail++] = v;
}
} return dep[t] != ;
} int dfs(int u, int f)
{
if (u == t || !f)
return f; int used = , flow, v; for (int i = hd[u]; ~i; i = nt[i])
if (dep[v = to[i]] == dep[u] + && fl[i])
{
flow = dfs(v, min(f - used, fl[i])); used += flow;
fl[i] -= flow;
fl[i^] += flow; if (used == f)
return f;
} if (!used)
dep[u] = ; return used;
} inline int maxFlow(void)
{
int maxFlow = , newFlow; while (bfs())
while (newFlow = dfs(s, inf))
maxFlow += newFlow; return maxFlow;
} signed main(void)
{
n = get_i();
m = get_i(); s = , t = (n + ) * m + ; memset(hd, -, sizeof(hd)); for (int i = ; i <= n; ++i)
{
int pigs = get_i();
add(s, i, pigs);
} for (int i = ; i < m; ++i)
for (int j = ; j <= n; ++j)
add((n + )*(i - ) + j, (n + )*i + j, inf); for (int i = ; i <= m; ++i)
{
int k = get_i();
for (int j = ; j <= k; ++j)
{
int p = get_i();
add((n + )*(i - ) + p, (n + )*i, inf);
add((n + )*i, (n + )*i + p, inf);
}
add((n + )*i, t, get_i());
} printf("%d\n", maxFlow());
}

正确的建图方法

设置一个源点,向M个猪圈点连初始数目的边,代表一开始的猪的数目。

然后想办法简化猪圈之间的转移,着重商人能得到的猪的来源,考虑直接在商人之间进行转移。

易知,如果商人X和商人Y,有X比Y先来,且X和Y有公共的猪圈的钥匙,那么Y能享受X能到达的所有猪圈。

用last_i表示上一个可以打开i猪圈的点,初始last_i=i猪圈初始点。

一个商人,如果有猪圈k的钥匙,那么last_k的所有流量都可以向这个商人转移,所有从last_k向商人连边,同时把last_k设为该商人。

商人点向汇点连最大购买数量的边。

跑最大流即可,点数O(N+M),边数O(N+M),小菜一碟了。

 #include <cstdio>
#include <cstring> inline int get_c(void)
{
static const int siz = ; static char buf[siz];
static char *head = buf + siz;
static char *tail = buf + siz; if (head == tail)
fread(head = buf, , siz, stdin); return *head++;
} inline int get_i(void)
{
register int ret = ;
register int neg = false;
register int bit = get_c(); for (; bit < ; bit = get_c())
if (bit == '-')neg ^= true; for (; bit > ; bit = get_c())
ret = ret * + bit - ; return neg ? -ret : ret;
} template <class T>
inline T min(T a, T b)
{
return a < b ? a : b;
} const int inf = 2e9;
const int maxn = ; int n, m;
int s, t;
int edges;
int hd[maxn];
int to[maxn];
int nt[maxn];
int fl[maxn]; inline void add(int u, int v, int f)
{ //printf("add %d %d %d\n", u, v, f);
nt[edges] = hd[u]; to[edges] = v; fl[edges] = f; hd[u] = edges++;
nt[edges] = hd[v]; to[edges] = u; fl[edges] = ; hd[v] = edges++;
} int dep[maxn]; inline bool bfs(void)
{
static int que[maxn];
static int head, tail; memset(dep, , sizeof(dep));
head = , tail = ;
que[tail++] = s;
dep[s] = ; while (head != tail)
{
int u = que[head++], v;
for (int i = hd[u]; ~i; i = nt[i])
if (!dep[v = to[i]] && fl[i])
{
dep[v] = dep[u] + ;
que[tail++] = v;
}
} return dep[t] != ;
} int dfs(int u, int f)
{
if (u == t || !f)
return f; int used = , flow, v; for (int i = hd[u]; ~i; i = nt[i])
if (dep[v = to[i]] == dep[u] + && fl[i])
{
flow = dfs(v, min(f - used, fl[i])); used += flow;
fl[i] -= flow;
fl[i^] += flow; if (used == f)
return f;
} if (!used)
dep[u] = ; return used;
} inline int maxFlow(void)
{
int maxFlow = , newFlow; while (bfs())
while (newFlow = dfs(s, inf))
maxFlow += newFlow; return maxFlow;
} int last[maxn]; signed main(void)
{
n = get_i();
m = get_i(); s = , t = n + m + ; memset(hd, -, sizeof(hd)); for (int i = ; i <= n; ++i)
add(s, i, get_i()), last[i] = i; for (int i = ; i <= m; ++i)
{
for (int j = get_i(), k; j--; )
k = get_i(), add(last[k], n + i, inf), last[k] = n + i;
add(n + i, t, get_i());
} printf("%d\n", maxFlow());
}

@Author: YouSiki

POJ 1149 PIGS的更多相关文章

  1. poj 1149 Pigs 网络流-最大流 建图的题目(明天更新)-已更新

    题目大意:是有M个猪圈,N个顾客,顾客要买猪,神奇的是顾客有一些猪圈的钥匙而主人MIRKO却没有钥匙,多么神奇?顾客可以在打开的猪圈购买任意数量的猪,只要猪圈里有足够数量的猪.而且当顾客打开猪圈后mi ...

  2. POJ 1149 PIGS(Dinic最大流)

    PIGS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20738   Accepted: 9481 Description ...

  3. poj 1149 PIGS【最大流经典建图】

    PIGS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18727   Accepted: 8508 Description ...

  4. 网络流(最大流):POJ 1149 PIGS

    PIGS Time Limit: 1000ms Memory Limit: 10000KB This problem will be judged on PKU. 64-bit integer(整数) ...

  5. POJ 1149 - PIGS - [最大流构图]

    Time Limit: 1000MS Memory Limit: 10000K Description Mirko works on a pig farm that consists of M loc ...

  6. POJ 1149 PIGS(最大流)

    Description Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock an ...

  7. POJ 1149 PIGS (AC这道题很不容易啊)网络流

    PIGS Description Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlo ...

  8. POJ 1149 PIGS 【网络流】

    题意: m n   //有m个猪圈,n个人卖猪. a1...am    //编号为i的猪圈里有ai头猪. b1 c1...cb1 d1   //第i个人有bi把钥匙,分别是ci猪圈的,其它猪圈里的猪都 ...

  9. POJ 1149 PIGS ★(经典网络流构图)

    [题意] 有M个猪圈,每个猪圈里初始时有若干头猪.一开始所有猪圈都是关闭的.依 次来了N个顾客,每个顾客分别会打开指定的几个猪圈,从中买若干头猪.每 个顾客分别都有他能够买的数量的上限.每个顾客走后, ...

随机推荐

  1. js Form.elements[i]的使用实例

    function pdf(){    //一个html里面可能存在多个form,所以document.form[0]指的是第一个form,document.form[1]返回就是第二个form,如果没 ...

  2. HTML5学习总结——canvas绘制象棋(canvas绘图)

    一.HTML5学习总结——canvas绘制象棋 1.第一次:canvas绘制象棋(笨方法)示例代码: <!DOCTYPE html> <html> <head> & ...

  3. SAP CRM 通过调试观察CL_CRM_BOL_ENTITY中的数据

    这个(BOL里面)最重要的类值得一看. BOL中的每条记录都会在CL_CRM_BOL_ENTIT中表示.至今,我们已经写过一些事件处理器,并且我们已经直接或间接的通过这个类工作.在业务场景中,我们也许 ...

  4. 微软要如何击败Salesforce?Office365、Azure、Dynamics365 全面布局AI | 双语

    微软在上月宣布组建自己的 AI 研究小组.该小组汇集了超过 5000 名计算机科学家和工程师,加上微软内部研究部门,将共同挖掘 AI 技术. 与此同时,亚马逊,Facebook,Google,IBM ...

  5. Appfuse:扩展自己的GenericManager

    通过代码生成机制的appfuse访问数据都通过GenericManager来实现,GenericManager默认提供了以下几个方法: package org.appfuse.service; imp ...

  6. freeswitch模块之event_socket

    这是我之前整理的关于freeswitch mod_event_socket的相关内容,这里记录下,也方便我以后查阅. mod_event_socket以socket的形式,对外提供控制FS一种途径, ...

  7. Netty:数据处理流程

    Netty作为异步的.事件驱动一个网络通信框架,使用它可以帮助我们快速开发高性能高可靠性的网络服务. 为了更好的使用Netty来解决开发中的问题,学习Netty是很有必要的. Netty现在主流有三个 ...

  8. Spring Bean的加载

    Spring加载bean的原则:不等bean创建完成就会将创建bean的ObjectFactory提早曝光加入到缓存中.   单例bean在Spring容器里只会创建一次,后续创建时会首先从缓存中获取 ...

  9. ORACLE lag()与lead() 函数

    一.简介 lag与lead函数是跟偏移量相关的两个分析函数,通过这两个函数可以在一次查询中取出同一字段的前N行的数据(lag)和后N行的数据(lead)作为独立的列,从而更方便地进行进行数据过滤.这种 ...

  10. LAMP和LNMP

    编译安装和yum安装 centos 7 可以使用10年 ubuntu可以使用5年 VirtualBox也是一个虚拟机 下载centos 安装centos exit   退出登陆 ping www.ba ...