Matplotlib画正弦余弦曲线
参考1:http://www.labri.fr/perso/nrougier/teaching/matplotlib/
参考2:https://matplotlib.org/api/artist_api.html
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt x = np.linspace(-np.pi, np.pi, 256,endpoint=True)
y_sin = np.sin(x)
y_cos = np.cos(x) plt.figure(figsize=(10,5))
plt.xlabel('Time(s)')
plt.ylabel('Value')
plt.title('Sin and Cos')
plt.plot(x, y_sin, label="$sin(x)$", color="blue")
plt.plot(x, y_cos, label="$cos(x)$", color="red")
plt.xlim(-4,4)
plt.xticks(np.linspace(-4,4,9,endpoint=True))
# plt.ylim(-1.2,1.2)
# plt.yticks(np.linspace(-1,1,9,endpoint=True))
plt.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
plt.legend()
plt.show()

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt x = np.linspace(-np.pi, np.pi, 256,endpoint=True)
y_sin = np.sin(x)
y_cos = np.cos(x) plt.figure(figsize=(10,5)) # 移动边界线,构建坐标系,原点为0
ax = plt.gca() #获取当前轴线实例
ax.xaxis.set_ticks_position('bottom') #x轴线,使用spine中的bottom线
ax.yaxis.set_ticks_position('left') #y轴线,使用spine中的left线
ax.spines['bottom'].set_position(('data',0)) #将bottom线的位置设置为数据为0的位置
ax.spines['left'].set_position(('data',0)) #将left线的位置设置为数据为0的位置
ax.spines['top'].set_color('none') #将top线的颜色设置为无
ax.spines['right'].set_color('none') #将right线的颜色设置为无 # plt.xlabel('Time(s)')
# plt.ylabel('Value')
plt.title('Sin and Cos')
plt.plot(x, y_sin, label="$sin(x)$", color="blue")
plt.plot(x, y_cos, label="$cos(x)$", color="red")
plt.xlim(-4,4) # 设置x轴的范围
# plt.xticks(np.linspace(-4,4,9,endpoint=True))
# 设置x轴的标尺刻度,从-pi到pi,取5个值
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$\pi/2$',r'$\pi$'])
# plt.ylim(-1.2,1.2)
# plt.yticks(np.linspace(-1,1,5,endpoint=True))
plt.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
plt.legend()
plt.show()

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt x = np.linspace(-np.pi, np.pi, 256,endpoint=True)
y_sin = np.sin(x)
y_cos = np.cos(x) plt.figure(figsize=(10,5),dpi=80) # 移动边界线,构建坐标系,原点为0
ax = plt.gca() #获取当前轴线实例
ax.xaxis.set_ticks_position('bottom') #x轴线,使用spine中的bottom线
ax.yaxis.set_ticks_position('left') #y轴线,使用spine中的left线
ax.spines['bottom'].set_position(('data',0)) #将bottom线的位置设置为数据为0的位置
ax.spines['left'].set_position(('data',0)) #将left线的位置设置为数据为0的位置
ax.spines['top'].set_color('none') #将top线的颜色设置为无
ax.spines['right'].set_color('none') #将right线的颜色设置为无 # plt.xlabel('Time(s)')
# plt.ylabel('Value')
plt.title('Sin and Cos')
plt.plot(x, y_sin, label="$sin(x)$", color="blue", linestyle="-")
plt.plot(x, y_cos, label="$cos(x)$", color="red", linestyle="-")
plt.xlim(-4,4) # 设置x轴的范围
# plt.xticks(np.linspace(-4,4,9,endpoint=True))
# 设置x轴的标尺刻度,从-pi到pi,取5个值
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$\pi/2$',r'$\pi$'])
plt.ylim(-1.2,1.2)
plt.yticks(np.linspace(-1,1,5,endpoint=True)) t = 2*np.pi/3
plt.plot([t,t],[0,np.cos(t)], color ='red', linewidth=1.5, linestyle="--")
plt.scatter([t,],[np.cos(t),], 50, color ='red')
plt.annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
xy=(t, np.sin(t)), xycoords='data',
xytext=(+10, +30), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.plot([t,t],[0,np.sin(t)], color ='blue', linewidth=1.5, linestyle="--")
plt.scatter([t,],[np.sin(t),], 50, color ='blue')
plt.annotate(r'$\cos(\frac{2\pi}{3})=-\frac{1}{2}$',
xy=(t, np.cos(t)), xycoords='data',
xytext=(-90, -50), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) # plt.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
plt.legend()
plt.show()

import numpy as np
import matplotlib.pyplot as plt x = np.linspace(-np.pi, np.pi, 256,endpoint=True)
y_sin = np.sin(x)
y_cos = np.cos(x) plt.figure(figsize=(10,5),dpi=80) # 移动边界线,构建坐标系,原点为0
ax = plt.gca() #获取当前轴线实例
ax.xaxis.set_ticks_position('bottom') #x轴线,使用spine中的bottom线
ax.yaxis.set_ticks_position('left') #y轴线,使用spine中的left线
ax.spines['bottom'].set_position(('data',0)) #将bottom线的位置设置为数据为0的位置
ax.spines['left'].set_position(('data',0)) #将left线的位置设置为数据为0的位置
ax.spines['top'].set_color('none') #将top线的颜色设置为无
ax.spines['right'].set_color('none') #将right线的颜色设置为无 # plt.xlabel('Time(s)')
# plt.ylabel('Value')
plt.title('Sine and Cosine')
# zorder 控制划线顺序:数值越小越先画
plt.plot(x, y_sin, label="$sin(x)$", color="blue", linewidth=2.5, linestyle="-", zorder=-2)
plt.plot(x, y_cos, label="$cos(x)$", color="red", linewidth=2.5, linestyle="-", zorder=-1)
plt.xlim(-4,4) # 设置x轴的范围
# plt.xticks(np.linspace(-4,4,9,endpoint=True))
# 设置x轴的标尺刻度,从-pi到pi,取5个值
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$\pi/2$',r'$\pi$'])
plt.ylim(-1.2,1.2)
plt.yticks(np.linspace(-1,1,5,endpoint=True)) t = 2*np.pi/3
plt.plot([t,t],[0,np.cos(t)], color ='red', linewidth=1.5, linestyle="--")
plt.scatter([t,],[np.cos(t),], 50, color ='red')
plt.annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
xy=(t, np.sin(t)), xycoords='data',
xytext=(+10, +30), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.plot([t,t],[0,np.sin(t)], color ='blue', linewidth=1.5, linestyle="--")
plt.scatter([t,],[np.sin(t),], 50, color ='blue')
plt.annotate(r'$\cos(\frac{2\pi}{3})=-\frac{1}{2}$',
xy=(t, np.cos(t)), xycoords='data',
xytext=(-90, -50), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) # 对坐标轴上的标度单独做标注
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(14)
label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65 )) # plt.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
plt.legend()
plt.show()

Matplotlib画正弦余弦曲线的更多相关文章
- python中matplotlib画折线图实例(坐标轴数字、字符串混搭及标题中文显示)
最近在用python中的matplotlib画折线图,遇到了坐标轴 "数字+刻度" 混合显示.标题中文显示.批量处理等诸多问题.通过学习解决了,来记录下.如有错误或不足之处,望请指 ...
- Matplotlib学习---用matplotlib画箱线图(boxplot)
箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分 ...
- Matplotlib学习---用matplotlib画雷达图(radar chart)
雷达图常用于对多项指标的全面分析.例如:HR想要比较两个应聘者的综合素质,用雷达图分别画出来,就可以进行直观的比较. 用Matplotlib画雷达图需要使用极坐标体系,可点击此链接,查看对极坐标体系的 ...
- matplotlib画线(2)
这篇随笔是matplotlib画线的补充>>> #nocl参数控制图例中有几列,>>> import numpy as np>>> import ...
- matplotlib 绘图实例01:正弦余弦曲线
该讲的实例结果如下图所示: 第01步:导入模块,并设置显示中文和负号的属性: import matplotlib.pyplot as plt import numpy as np plt.rcPara ...
- Python 的 Matplotlib 画图库
Matplotlib安装 NumPy库方便数值运算,但枯燥的数据并不利于人们的直观理解. 数据需要可视化. Matplotlib:一个数据可视化函数库 使用前需要安装 利用Python自带 ...
- 2.matplotlib画散点图
2.1.身高和体重实例 import matplotlib.pyplot as plt height = [161,162,163,164,165] weight = [50,60,70,80,90] ...
- 使用matplotlib画饼图
import matplotlib.pyplot as pltx = [4, 9, 21, 55, 30, 18]labels = ['math', 'history', 'chemistry', ' ...
- Matplotlib学习---用matplotlib画误差线(errorbar)
误差线用于显示数据的不确定程度,误差一般使用标准差(Standard Deviation)或标准误差(Standard Error). 标准差(SD):是方差的算术平方根.如果是总体标准差,那么用σ表 ...
随机推荐
- Java基础之入门
写写基础,顺便回顾下,再深层次思考下哪些深入的没弄明白. Java是Sun Microsystems于1995年推出的高级编程语言 其版本 由 1.1 -> 1.2 -> 1.3 -&g ...
- Linux学习历程——Centos 7 passwd命令
一.命令介绍 passwd 命令用于修改用户密码,过期时间,认证信息等. 普通用户只能使用 passwd 命令修改自身的系统密码,而 root 管理员则有权限修改其他所有人的密码.更酷的是,root ...
- Windows Server(r12) - 配置 MySQL 远程访问
Windows Server(r12) - 配置 MySQL 远程访问 工作主要为两部分, 一部分是 Windows 防火墙, 一部分是 MySQL 自身 Windows 端口远程访问 其实就是在 W ...
- SQLSTATE[HY000]: General error: 1030 Got error 28 from storage engine
今天上课程化平台考试,输入平台网址突然报这个错误 可以先df -h 发现/tmp文件使用满了 ,清理下不需要的临时文件即可
- Flink监控:Monitoring Apache Flink Applications
This post originally appeared on the Apache Flink blog. It was reproduced here under the Apache Lice ...
- oracle 行列转换
oracle 行列转换列名如果是数字,用双引号包住 如下: -- 建表 create table workinfo(wid integer primary key,sid integer ,CON ...
- EasyUI的Datagrid鼠标悬停显示单元格内容
功能描述:table鼠标悬停显示单元格内容 1.js函数 function hoveringShow(value) { return "<span title='" + va ...
- vue动态设置初始页
- Bayes factor
bayes因子为什么一定要除以先验机会比,如果是想用样本的作用,来判断支持原来的假设θ_0,H_0的力度,直接用后验概率比不就好了吗? 左边等于右边
- 微信内点击链接或扫描二维码可直接用外部浏览器打开H5链接的解决方案
很多朋友问我怎么解决微信内点击链接或扫描二维码可以直接跳出微信在外部浏览器打开网页链接,其实这并不难,只要我们使用微信跳转浏览器接口实现跳转功能即可. 简单的处理方案 1. 用浏览器打开我们需要用到的 ...