<题目链接>

题目大意:

两个人轮流从一个序列中取数,他们都面临同样的二选一决策:是拿走最左边的数,还是拿走最右边的数?问先手最多能够得到的分数是多少。

解题分析:

一道比较经典的DP,因为每次只能从数组的两端取走一个数,所以每次面对的数组都只可能是一段连续的子数组。我们不妨假设$dp[l][r]$表示对于数组$A[i]~A[j]$,先手能够获得的最多得分。于是状态的转移就不难得出了。

枚举所有区间:

$l==r$的时候,肯定是$dp[l][r]=arr[l]$

而对于其他区间大于1的情况,$dp[l][r]=max(dp[l][r],((sum[r]-sum[l-1])-min(dp[l+1][r],dp[l][r-1])))$

官方题解 >>>

递推DP

#include <bits/stdc++.h>
using namespace std; #define N int(1e3+5)
int n,dp[N][N],arr[N],sum[N]; int main(){
scanf("%d",&n);
sum[]=;
for(int i=;i<=n;i++)scanf("%d",&arr[i]),sum[i]=sum[i-]+arr[i];
memset(dp,-0x3f,sizeof(dp));
for(int i=n;i>=;i--){
dp[i][i]=arr[i];
for(int j=i+;j<=n;j++){
dp[i][j]=max(dp[i][j],(sum[j]-sum[i-])-min(dp[i+][j],dp[i][j-]));
}
}
printf("%d\n",dp[][n]);
}

记忆化搜索

#include <bits/stdc++.h>
using namespace std; const int N = 1e3+;
int n,arr[N],dp[N][N],sum[N]; int DP(int l,int r){
if(l>r)return ;
if(dp[l][r]!=-)return dp[l][r];
dp[l][r]=-1e9;
if(l==r)dp[l][r]=arr[l];
else dp[l][r]=max(dp[l][r],(sum[r]-sum[l-])-min(DP(l+,r),DP(l,r-)));
return dp[l][r];
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&arr[i]),sum[i]=sum[i-]+arr[i];
}
memset(dp,-,sizeof(dp));
printf("%d\n",DP(,n));
}

HihoCoder1338 A Game (区间DP)的更多相关文章

  1. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  2. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  3. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  4. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  5. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  6. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  7. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  8. 区间dp总结篇

    前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...

  9. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

随机推荐

  1. DOS批处理:FOR中的Delims和Tokens参数

    在For命令语句的参数F中,最难理解的就是Delims和Tokens两个选项,本文简单的做一个比较和总结. “For /f”常用来解析文本,读取字符串.分工上,delims负责切分字符串,而token ...

  2. BZOJ3932 主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=3932 题意:给出一些带有等级的线段,求一点上前K小个等级线段的等级之和 询问是对于每一个点询问前K ...

  3. NLTK基础

    Python上著名的⾃然语⾔处理库 ⾃带语料库,词性分类库 ⾃带分类,分词,等等功能 强⼤的社区⽀持 还有N多的简单版wrapper 安装语料库 # 方式一 import nltk nltk.down ...

  4. mycat 使用

    介绍 支持SQL92标准 支持MySQL.Oracle.DB2.SQL Server.PostgreSQL等DB的常见SQL语法 遵守Mysql原生协议,跨语言,跨平台,跨数据库的通用中间件代理. 基 ...

  5. Eclipse拷贝动态的web工程修改context root的值

    Eclipse拷贝动态的web工程修改context root的值 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. context root的名称一般是我们访问URL时的PATH路径 ...

  6. Hadoop记录- Yarn scheduler队列采集

    #!/bin/sh ip=10.116.100.11 port=8088 export HADOOP_HOME=/app/hadoop/bin rmstate1=$($HADOOP_HOME/yarn ...

  7. [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构

    证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex ...

  8. 关于MySql经典高频查询语句的整理

    一查询数值型数据: SELECT * FROM tb_name WHERE sum > 100; 查询谓词:>,=,<,<>,!=,!>,!<,=>,= ...

  9. java(7)数组

    一.什么是数组及其作用? 定义:具有相同数据类型的一个集合 作用:存储连续的具有相同类型的数据 二.java中如何声明和定义数组 2.1 声明和定义的语法: 数据类型[ ] 数组名:( int[ ] ...

  10. print_r print var_dump echo区别

    print_r print_r(mixed $expression [,bool $true]) 显示关于一个变量的易于理解的信息,如果给出的是string/integer/float 将打印变量值本 ...