Spark SQL大数据处理并写入Elasticsearch
SparkSQL(Spark用于处理结构化数据的模块)
通过SparkSQL导入的数据可以来自MySQL数据库、Json数据、Csv数据等,通过load这些数据可以对其做一系列计算
下面通过程序代码来详细查看SparkSQL导入数据并写入到ES中:
数据集:北京市PM2.5数据
Spark版本:2.3.2
Python版本:3.5.2
mysql-connector-java-8.0.11 下载
ElasticSearch:6.4.1
Kibana:6.4.1
elasticsearch-spark-20_2.11-6.4.1.jar 下载
具体代码:
# coding: utf-8
import sys
import os pre_current_dir = os.path.dirname(os.getcwd())
sys.path.append(pre_current_dir)
from pyspark.sql import SparkSession
from pyspark.sql.types import *
from pyspark.sql.functions import udf
from settings import ES_CONF current_dir = os.path.dirname(os.path.realpath(__file__)) spark = SparkSession.builder.appName("weather_result").getOrCreate() def get_health_level(value):
"""
PM2.5对应健康级别
:param value:
:return:
"""
if 0 <= value <= 50:
return "Very Good"
elif 50 < value <= 100:
return "Good"
elif 100 < value <= 150:
return "Unhealthy for Sensi"
elif value <= 200:
return "Unhealthy"
elif 200 < value <= 300:
return "Very Unhealthy"
elif 300 < value <= 500:
return "Hazardous"
elif value > 500:
return "Extreme danger"
else:
return None def get_weather_result():
"""
获取Spark SQL分析后的数据
:return:
"""
# load所需字段的数据到DF
df_2017 = spark.read.format("csv") \
.option("header", "true") \
.option("inferSchema", "true") \
.load("file://{}/data/Beijing2017_PM25.csv".format(current_dir)) \
.select("Year", "Month", "Day", "Hour", "Value", "QC Name") # 查看Schema
df_2017.printSchema() # 通过udf将字符型health_level转换为column
level_function_udf = udf(get_health_level, StringType()) # 新建列healthy_level 并healthy_level分组
group_2017 = df_2017.withColumn(
"healthy_level", level_function_udf(df_2017['Value'])
).groupBy("healthy_level").count() # 新建列days和percentage 并计算它们对应的值
result_2017 = group_2017.select("healthy_level", "count") \
.withColumn("days", group_2017['count'] / 24) \
.withColumn("percentage", group_2017['count'] / df_2017.count())
result_2017.show() return result_2017 def write_result_es():
"""
将SparkSQL计算结果写入到ES
:return:
"""
result_2017 = get_weather_result()
# ES_CONF配置 ES的node和index
result_2017.write.format("org.elasticsearch.spark.sql") \
.option("es.nodes", "{}".format(ES_CONF['ELASTIC_HOST'])) \
.mode("overwrite") \
.save("{}/pm_value".format(ES_CONF['WEATHER_INDEX_NAME'])) write_result_es()
spark.stop()
将mysql-connector-java-8.0.11和elasticsearch-spark-20_2.11-6.4.1.jar放到Spark的jars目录下,提交spark任务即可。
注意:
(1) 如果提示:ClassNotFoundException Failed to find data source: org.elasticsearch.spark.sql.,则表示spark没有发现jar包,此时需重新编译pyspark:
cd /opt/spark-2.3.2-bin-hadoop2.7/python
python3 setup.py sdist
pip install dist/*.tar.gz
(2) 如果提示:Multiple ES-Hadoop versions detected in the classpath; please use only one ,
则表示ES-Hadoop jar包有多余的,可能既有elasticsearch-hadoop,又有elasticsearch-spark,此时删除多余的jar包,重新编译pyspark 即可
执行效果:

更多源码请关注我的github, https://github.com/a342058040/Spark-for-Python ,Spark相关技术全程用python实现,持续更新
Spark SQL大数据处理并写入Elasticsearch的更多相关文章
- Spark SQL JSON数据处理
背景 这一篇可以说是“Hive JSON数据处理的一点探索”的兄弟篇. 平台为了加速即席查询的分析效率,在我们的Hadoop集群上安装部署了Spark Server,并且与我们的Hive数据仓 ...
- 大数据实时处理-基于Spark的大数据实时处理及应用技术培训
随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的 ...
- Spark官方1 ---------Spark SQL和DataFrame指南(1.5.0)
概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据 ...
- [转] Spark sql 内置配置(V2.2)
[From] https://blog.csdn.net/u010990043/article/details/82842995 最近整理了一下spark SQL内置配.加粗配置项是对sparkSQL ...
- 第五章 大数据平台与技术 第12讲 大数据处理平台Spark
Spark支持多种的编程语言 对比scala和Java编程上节课的计数程序.相比之下,scala简洁明了. Hadoop的IO开销大导致了延迟高,也就是说任务和任务之间涉及到I/O操作.前一个任务完成 ...
- 流式大数据处理的三种框架:Storm,Spark和Samza
许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中,先要设计一个用于实时计算的 ...
- [转载]流式大数据处理的三种框架:Storm,Spark和Samza
许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中,先要设计一个用于实时计算的 ...
- 《Spark大数据处理:技术、应用与性能优化 》
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 ...
- Spark大数据处理技术
全球首部全面介绍Spark及Spark生态圈相关技术的技术书籍 俯览未来大局,不失精细剖析,呈现一个现代大数据框架的架构原理和实现细节 透彻讲解Spark原理和架构,以及部署模式.调度框架.存储管理及 ...
随机推荐
- Java基础 -- final关键字
在java的关键字中,static和final是两个我们必须掌握的关键字.不同于其他关键字,他们都有多种用法,而且在一定环境下使用,可以提高程序的运行性能,优化程序的结构.下面我们来了解一下final ...
- 数据库导出excel,前后端分离
主要参考了这篇博文:https://www.cnblogs.com/jerehedu/p/4343509.html 2.3和2.4 采用xssf,依赖:compile group: 'org.apa ...
- Docker:dockerfile镜像的分层 [九]
一.docker镜像的分层 1.图像呈现 2.命令呈现 [root@oldboy kod]# docker image history kod:v1 IMAGE CREATED CREATED BY ...
- HDU 1584(蜘蛛牌 DFS)
题意是在蜘蛛纸牌的背景下求 10 个数的最小移动距离. 在数组中存储 10 个数字各自的位置,用深搜回溯的方法求解. 代码如下: #include <bits/stdc++.h> usin ...
- 闭包创建自己的 plugin 示例 加载 loading
plugin 插件 什么是 plugin? 实现一个功能,与主应用程序分离,减少主应用程序的大小,高复用,可维护 制作过程中,一定要避免依赖其他的元素,减少 id 等的使用,避免与页面中其他内容冲突 ...
- ElasticSearch评分分析 explian 解释和一些查询理解
ElasticSearch评分分析 explian 解释和一些查询理解 按照es-ik分析器安装了ik分词器.创建索引:PUT /index_ik_test.索引包含2个字段:content和nick ...
- SSH框架之hibernate《四》
hibernate第四天 一.JPA相关概念 1.1JPA概述 全称是:Java Persistence API.是sun公司推出的一套基于ORM的规范 ...
- java(9)类和对象
一.理解什么是类和对象 万事万物皆对象 1.1.属性——对象具有的特征(特点) 1.2.方法——对象可执行的操作(能干什么事) 1.3.对象的定义: 是一个客观存在的,看的见或摸得着的实体,由属性和方 ...
- JAVA进阶10
间歇性混吃等死,持续性踌躇满志系列-------------第10天 1.Random package cn.intcast.day08.demo01; import java.util.Random ...
- 更改 Ubuntu默认Python版本的问题
一般Ubuntu默认版本为2.x,之前运行一些程序,将默认版本修改为3.5,现在想修改为2.7. 之前的方法有些忘记,现在重新记录一下: 1.查看你系统中有哪些Python的二进制文件可供使用, ls ...