[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.5 粘性热传导流体动力学方程组的数学结构
1. 粘性热传导流体动力学方程组可化为 $$\beex \bea \cfrac{\p \rho}{\p t}&+({\bf u}\cdot\n)\rho=-\rho \Div{\bf u},\\ \cfrac{\p{\bf u}}{\p t}&-\cfrac{\mu}{\rho}\lap {\bf u} -\cfrac{\mu'+\cfrac{1}{3}\mu}{\rho}\n\Div{\bf u} =\cfrac{1}{\rho} \sez{ \rho {\bf F}-c^2\n\rho-\cfrac{\p p}{\p T}\n T- (\rho{\bf u}\cdot\n){\bf u}\atop +\cfrac{2\rd \mu}{\rd T}{\bf S}\cdot\n T +\cfrac{\rd \sex{\mu'-\cfrac{2}{3}\mu}}{\rd T} (\Div{\bf u})\n T }\\ \cfrac{\p T}{\p t}&-\cfrac{\kappa}{\rho \cfrac{\p e}{\p T}}\lap T =\cfrac{1}{\cfrac{\p e}{\p T}} \sez{ \sex{ \rho \cfrac{\p e}{\p \rho}-\cfrac{p}{\rho} }\Div{\bf u} +\cfrac{2\mu}{\rho}{\bf S}\cdot\n {\bf u}^T\atop +\cfrac{1}{\rho}\sex{\mu'-\cfrac{2}{3}\mu}(\Div{\bf u})^2 -({\bf u}\cdot\n)T+\cfrac{1}{\rho \cfrac{\p e}{\p \rho}}\n\kappa\cdot\n T }. \eea \eeex$$
2. $\rho$ 的方程为 $$\bex A_0\cfrac{\p \rho}{\p t}+\sum_{k=1}^3 A_k({\bf u})\cfrac{\p \rho}{\p x_k}=-\rho \Div{\bf u}, \eex$$ 其中 $$\bex A_0=1,\quad A_k({\bf u})=u_k; \eex$$ 而其为一阶双曲型方程.
3. $U=(u_1,u_2,u_3,T)^T$ 的方程为 $$\bex \cfrac{\p U}{\p t}-\sum_{i,j=1}^3 B_{ij}(\rho,U)\cfrac{\p^2U}{\p x_i\p x_j}=C(\rho,\n \rho,U,\n U), \eex$$ 其中 $B_{ij}$ 可定出, 均为对称矩阵; 且对 $\forall\ {\bf \xi}:\ |{\bf \xi}|=1$, 有 $\dps{\sum_{i,j=1}^3 B_{ij}\xi_i\xi_j}$ 为正定阵.
4. 对称抛物型方程组的定义 对方程组 $$\bee\label{2_2_5_para} \cfrac{\p U}{\p t}-\sum_{i,j=1}^n B_{ij}\cfrac{\p^2U}{\p x_i\p x_j}=C, \eee$$ 其中 $U=(u_1,\cdots,u_n)^T$, $B_{ij}$ 为 $m\times m$ 阵, 若 $B_{ij}$ 为对称阵, 且对 $\forall\ {\bf \xi}\in{\bf R}^n:\ |{\bf \xi}|=1$, $\dps{\sum_{i,j=1}^n B_{ij}\xi_i\xi_j}$ 为正定阵, 则称 \eqref{2_2_5_para} 为 Petrovsky 意义下的对称抛物型方程组.
5. 总结: 粘性热传导流体动力学方程组是一个拟线性对称双曲-抛物耦合方程组.
6. 对粘性热传导流体动力学方程组, 可以提 Cauchy 问题, 其有局部经典解、小初值整体经典解; 也可提初边值问题 (特别是对绕流问题而言).
[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.5 粘性热传导流体动力学方程组的数学结构的更多相关文章
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1. 粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组. 2. 理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数). 3. 右端项具有间 ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程
1. 记号与假设 (1) 已燃气体的化学能为 $0$. (2) 单位质量的未燃气体的化学能为 $g_0>0$. 2. 对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1. 粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1. 记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧). 2. 物理化学 (1) 燃烧过程中, 通过化学反应 ...
- [物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfr ...
- [物理学与PDEs]第2章第5节 一维流体力学方程组的 Lagrange 形式 5.2 Lagrange 坐标
1. Lagrange 坐标 $$\beex \bea &\quad 0=\int_\Omega\cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)\r ...
- [物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1. 一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t ...
- [物理学与PDEs]第2章第1节 理想流体力学方程组 1.3 理想流体力学方程组的数学结构
1. 局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$. 2. 将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\ ...
- [物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组
1. 质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0. \eee$$ 2. 动量守恒定 ...
- [物理学与PDEs]第2章第1节 理想流体力学方程组 1.1 预备知识
1. 理想流体: 指忽略粘性及热传导的流体. 2. 流体的状态 (运动状态及热力学状态) 的描述 (1) 速度向量 $\bbu=(u_1,u_2,u_3)$: 流体微元的宏观运动速度. (2) ...
随机推荐
- Kafka配置项unclean.leader.election.enable造成consumer出现offset重置现象
消费端出现offset重置为latest, earliest现象,类似log: (org.apache.kafka.clients.consumer.internals.Fetcher.handleF ...
- docker面试整理
为什么要使用docker https://www.cnblogs.com/AshOfTime/p/10755479.html docker的使用场景 docker和虚拟机比较的优势 https: ...
- 详解Linux双网卡绑定之bond0
1.什么是bond? 网卡bond是通过多张网卡绑定为一个逻辑网卡,实现本地网卡的冗余,带宽扩容和负载均衡,在生产场景中是一种常用的技术.Kernels 2.4.12及以后的版本均供bonding模块 ...
- day 10函数二
今日内容 '''实参:调用函数,在括号内传入的实际值,值可以为常量.变量.表达式或三者的组合*****形参:定义函数,在括号内声明的变量名,用来接受外界传来的值''''''注:形参随着函数的调用 ...
- 微信小程序测试
1.连接真机,微信已经登录过了 2.代码: 3.appium自带的识别工具 4.设置工具连接设备的方式 参考资料: https://www.cnblogs.com/yoyoketang/p/91449 ...
- LOJ2831 JOISC2018 道路建设 LCT、树状数组
传送门 题目的操作大概是:求某个点到根的链的逆序对,然后对这条链做区间赋值 求某个点到根的链,就是LCT中的access操作,所以我们每一次把access过后的链打上标记,就可以做到区间赋值了. 计算 ...
- xgboost 参数调优指南
一.XGBoost的优势 XGBoost算法可以给预测模型带来能力的提升.当我对它的表现有更多了解的时候,当我对它的高准确率背后的原理有更多了解的时候,我发现它具有很多优势: 1 正则化 标准GBDT ...
- Shell命令-文件及内容处理之cat、tac
文件及内容处理 - cat.tac 1. cat:显示文件内容 cat命令的功能说明 cat命令用于连接多个文件并且打印到屏幕输出或重定向到指定文件中 cat命令的语法格式 cat [OPTION]. ...
- Python——封装
广义上面向对象的封装:代码的保护,面向对象的思想本身是一种保护,只让自己的对象能调用自己累的方法 狭义上的封装——面向对象的三大特性之一 属性.方法都隐藏起来,不让你看见 规则: 1.所有的私有,都 ...
- jsp篇 之 EL表达式
EL表达式: 形式:${ } 作用:从一个[范围对象里面取值]或者从一个对象中取值或是向页面输出值. 之前我们使用<% ... %>等形式,并不够简洁. 例如: <% request ...