numpy的基础运算中还有很多运算,我们这里再记录一些。

最小/大值索引

前面一篇博文中我们讲述过如何获得数组中的最小值,这里我们获得最小/大值的索引值,也就是这个最小/大值在整个数组中位于第几位。

import numpy as np
a = np.array([[10, 30, 15],
[20, 5, 25]])
print("a=")
print(a) print("最小值索引:", a.argmin())
print("最大值索引:", np.argmax(a))

输出为:

a=
[[10 30 15]
[20 5 25]]
最小值索引: 4
最大值索引: 1

这就意味着这里最小值的索引号是4,也就是数组中第4位的值,也就是数值5。

平均值

import numpy as np
a = np.array([[10, 30, 15],
[20, 5, 25]])
print("a=")
print(a) print("平均值:", a.mean())

输出为:

a=
[[10 30 15]
[20 5 25]]
平均值: 17.5

我们也可以通过axis参数来指定到底是在行上的平均值还是列上的平均值。

例如,我们使用axis=1来指示行上的平均值:

import numpy as np
a = np.array([[10, 30, 15],
[20, 5, 25]])
print("a=")
print(a) print("行平均值:", a.mean(axis=1))

输出为:

a=
[[10 30 15]
[20 5 25]]
行平均值: [ 18.33333333 16.66666667]

累积求和

import numpy as np
a = np.array([10, 30, 15, 20, 5, 25])
print("a=")
print(a) print("累积求和:", a.cumsum())

输出:

a=
[10 30 15 20 5 25]
累积求和: [ 10 40 55 75 80 105]

累差

import numpy as np
a = np.array([4, 6, 9, 1, 9])
print("a=")
print(a) print("累差:", np.diff(a))

输出:

a=
[4 6 9 1 9]
累差: [ 2 3 -8 8]

输出结果就是后一个元素的值减去前一个元素的值,最终元素的个数少1。

找出非0的数

import numpy as np
a = np.array([[4, 0, 9],
[1, 0, 8]])
print("a=")
print(a) print("找出非零的数:", np.nonzero(a))

输出为:

a=
[[4 0 9]
[1 0 8]]
找出非零的数: (array([0, 0, 1, 1], dtype=int64), array([0, 2, 0, 2], dtype=int64))

在上述的输出结果中表示的非0数是相应的索引位置,因为我们是二维数组,所以结果有两段,第一段表示某一维中的索引号,另一段表示的是另一维的索引号。

具体解读为其中的非零值位于:(0, 0), (0, 2), (1, 0), (1, 2)

也就是其中数字4、9、1、8所在的索引位置。

排序

import numpy as np
a = np.array([[4, 0, 9],
[1, 0, 8]])
print("a=")
print(a) print("排序结果:")
print(np.sort(a))

输出:

a=
[[4 0 9]
[1 0 8]]
排序结果:
[[0 4 9]
[0 1 8]]

转置矩阵

转置矩阵就是把行变成列,列变成行。例如:

import numpy as np
a = np.array([[4, 0, 9],
[1, 0, 8]])
print("a=")
print(a) print("转置矩阵:")
print(np.transpose(a))

输出为:

a=
[[4 0 9]
[1 0 8]]
转置矩阵:
[[4 1]
[0 0]
[9 8]]

也可以用简写的方式:a.T,这个读者自己去试试吧。

截取矩阵中的数据

把矩阵中的数改变成只属于某个数据范围内的数,例如:

import numpy as np
a = np.array([[4, 6, 9],
[1, 7, 8]])
print("a=")
print(a) print("np.clip:")
print(np.clip(a, 3, 7))

输出为:

a=
[[4 6 9]
[1 7 8]]
np.clip:
[[4 6 7]
[3 7 7]]

这样就把其中的元素都设置成了3到7的范围之内的数,比3小的数被修改成了3,比7大的数被修改成了7。

numpy的基础运算2-【老鱼学numpy】的更多相关文章

  1. numpy的基础运算-【老鱼学numpy】

    概述 本节主要讲解numpy数组的加减乘除四则运算. np.array()返回的是numpy的数组,官方称为:ndarray,也就是N维数组对象(矩阵),N-dimensional array obj ...

  2. numpy有什么用【老鱼学numpy】

    老鱼为了跟上时代潮流,也开始入门人工智能.机器学习了,瞬时觉得自己有点高大上了:). 从机器学习的实用系列出发,我们会以numpy => pandas => scikit-learn =& ...

  3. numpy的array合并-【老鱼学numpy】

    概述 本节主要讲述如何把两个数组按照行或列进行合并. 按行进行上下合并 例如: import numpy as np a = np.array([1, 1, 1]) b = np.array([2, ...

  4. numpy array的复制-【老鱼学numpy】

    对象的引用 看例子: a = np.array([0, 1, 2, 3]) b = a a[0] = 5 print("b=", b) # 判断a和b是否是同样的地址 print( ...

  5. python开发环境搭建及numpy基本属性-【老鱼学numpy】

    目的 本节我们将介绍如何搭建python的开发环境以及numpy的基本属性,这样可以检验我们的numpy是否安装正确了. python开发环境的搭建 工欲善其事必先利其器,我用得比较顺手的是Intel ...

  6. numpy安装-【老鱼学numpy】

    要玩numpy,就得要安装numpy. 安装python 3.6.3 64位 首先需要安装python,安装python的具体方法这里就不细讲了. 可以到官网上下载相应的python版本就可以了,目前 ...

  7. numpy创建array【老鱼学numpy】

    在上一篇文章中,我们已经看到了如何通过numpy创建numpy中的数组,这里再重复一下: import numpy as np # 数组 a = [[1, 2, 3], [4, 5, 6]] prin ...

  8. numpy的索引-【老鱼学numpy】

    简单的索引值 import numpy as np a = np.arange(3, 15).reshape(3, 4) print("a=") print(a) print(&q ...

  9. numpy array分割-【老鱼学numpy】

    有合并,就有分割. 本节主要讲述如何通过numpy对数组进行横向/纵向分割. 横向/纵向分割数组 首先创建一个6行4列的数组,然后我们对此数组按照横向进行切割,分成3块,这样每块应该有2行,见例子: ...

随机推荐

  1. Q&A in Power BI service and Power BI Desktop

    What is Q&A? Sometimes the fastest way to get an answer from your data is to ask a question usin ...

  2. Listen 指令

    L:44

  3. BBS 502 BadGateway 原因分析

    说明: LNMP架构. crontab里有每隔20分钟重启php的任务:然后我用python写了个每1分钟检测php-cgi进程是否存在的脚本,如果不存在则调用重启php的脚本,并邮件通知管理员.cr ...

  4. Codeforces878 A. Short Program

    题目类型:位运算 传送门:>Here< 题意:给出\(N\)个位运算操作,要求简化操作数量,使之结果不受影响(数据在1023之内) 解题思路 我们发现数字的每一位是独立的.也就是说,每一个 ...

  5. laravel 图片验证码

    今天看见一个网站登录页面有个图片验证码,想想自己以前好像真没弄过这个玩意,正好现在有时间,准备用laravel来弄个图片验证码出来,不多BB,直接上代码 1.直接使用别人封装好的,composer下载 ...

  6. Java多线程_复习(更新中!!)

    java多线程的常见例子 一.相关知识: Java多线程程序设计到的知识: (一)对同一个数量进行操作 (二)对同一个对象进行操作 (三)回调方法使用 (四)线程同步,死锁问题 (五)线程通信 等等 ...

  7. JavaProperties类、序列化流与反序列化流、打印流、commons-IO整理

    Properties类 Properties 类表示了一个持久的属性集.Properties 可保存在流中或从流中加载.属性列表中每个键及其对应值都是一个字符串. 特点: 1.Hashtable的子类 ...

  8. 海亮OI学习游记

    这只是一篇纯洁的游记,这里将要记录我在海亮十天集训的生活与被虐的历史QWQ...... Day1(2.10)刚来到海亮,嗯,这的环境真的不错. 来到机房,woc这机房的配置好高啊...这里都能打守望屁 ...

  9. Centos7 升级内核版本

    1.查看当前内核版本 $ uname -r -.el7.x86_64 $ uname -a Linux k8s-master -.el7.x86_64 # SMP Tue Nov :: UTC x86 ...

  10. Object is not a function

    如图报了一个这样的错,百度好多都说是函数名和html元素重名的问题.可是这个问题我想我这里是不存在的 可以看到就一个绑定事件,而且id名不是关键字 报错是在$.ajax这一行,索性就把submit-i ...