CF662C Binary Table 枚举 FWT
题面
洛谷题面 (虽然洛谷最近有点慢)
题解
观察到行列的数据范围相差悬殊,而且行的数量仅有20,完全可以支持枚举,因此我们考虑枚举哪些行会翻转。
对于第i列,我们将它代表的01串提取出来,表示为\(v[i]\),
然后我们假设有第0列,其中的第i行如果是1,表示这行将会翻转。
那么可以发现,执行完对行的操作时,每一列的状态为\(x = v[i] \oplus v[0]\),此时我们只需要考虑对列的操作,令\(cnt[i]\)表示状态为\(i\)时01串中1的个数。
显然为了使得1的个数尽可能少,对于状态为\(x\)的列,产生的贡献为\(s[x] = min(cnt[x], n - cnt[x])\)
令\(ans[b]\)表示\(v[0] = b\)时的最优解。
那么有
\]
考虑换一种枚举方式,我们枚举\(s[i]\),然后就只需要再找到使得\(v[j] \oplus b = i\)的\(j\)有多少个就可以快速算出贡献了。
\(v[j] \oplus b = i \Longrightarrow v[j] = i \oplus b\)
因此我们只需要找到有多少个\(v[j] = i \oplus b\)即可,令\(p[i]\)表示有多少列的状态为\(i\),
那么我们要求的个数即为\(p[i \oplus b]\)
因此答案就是:
\]
观察到\(i \oplus i \oplus b = b\),是一个定值。
因此上式等效于
\]
直接上FWT即可
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define LL long long
#define AC 22
#define ac 100100
#define N 1050000
int n, m, maxn;
LL s[N], p[N], ans[N];
char ss[AC][ac];
inline void upmin(LL &a, LL b){if(b < a) a = b;}
inline int cal(int x)
{
int rnt = 0;
while(x) rnt += x & 1, x >>= 1;
return rnt;
}
void pre()
{
scanf("%d%d", &n, &m), maxn = 1 << n;
for(R i = 1; i <= n; i ++) scanf("%s", ss[i] + 1);
for(R i = 0; i <= maxn; i ++) s[i] = min(cal(i), n - cal(i));
for(R i = 1; i <= m; i ++)
{
int x = 0;
for(R j = 1; j <= n; j ++) x <<= 1, x += (ss[j][i] == '1');
++ p[x];
}
/* for(R i = 0; i < maxn; i ++) printf("%lld ", s[i]);
printf("\n");
for(R i = 0; i < maxn; i ++) printf("%lld ", p[i]);
printf("\n"); */
}
void fwt(LL *A, int opt)
{
for(R i = 2; i <= maxn; i <<= 1)
for(R r = i >> 1, j = 0; j < maxn; j += i)
for(R k = j; k < j + r; k ++)
{
LL x = A[k], y = A[k + r];
A[k] = x + y, A[k + r] = x - y;
if(opt < 0) A[k] >>= 1, A[k + r] >>= 1;
}
}
void work()
{
fwt(s, 1), fwt(p, 1);
for(R i = 0; i < maxn; i ++) ans[i] = s[i] * p[i];
fwt(ans, -1);
LL rnt = n * m;
for(R i = 0; i < maxn; i ++) upmin(rnt, ans[i]);
printf("%lld\n", rnt);
}
int main()
{
// freopen("in.in", "r", stdin);
pre();
work();
// fclose(stdin);
return 0;
}
CF662C Binary Table 枚举 FWT的更多相关文章
- CF662C Binary Table【FWT】
CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...
- CF662C Binary Table (FWT板题)
复习了一发FWT,发现还挺简单的... 没时间写了,就放一个博客吧:Great_Influence 的博客 注意这一句ans[i]=∑j⊗k=if[j]∗dp[k]ans[i]= ∑_{j⊗k=i} ...
- [CF662C] Binary Table(FWT)
题意: https://www.cnblogs.com/cjyyb/p/9065801.html 题解:
- [CF662C Binary Table][状压+FWT]
CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...
- 【CF662C】Binary Table(FWT)
[CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...
- CF662C Binary Table FWT
传送门 \(N \leq 20\)很小诶 一个暴力的思路是枚举行的翻转状态然后在列上贪心 复杂度为\(O(2^NM)\)显然过不去 考虑到可能有若干列的初始状态是一样的,那么在任意反转之后他们贪心的策 ...
- CF662C Binary Table 【状压 + FWT】
题目链接 CF662C 题解 行比较少,容易想到将每一列的状态压缩 在行操作固定的情况下,容易发现每一列的操作就是翻转\(0\)和\(1\),要取最小方案,方案唯一 所以我们只需求出每一种操作的答案 ...
- CF662C Binary Table (快速沃尔什变换FWT)
题面 题解 我们会发现,如果单独的一列或一行,它的答案是O1确定的,如果确定了每一行是否变换,那么最后的答案也就简单了许多, 如果确定了行的变换状压下来是x(即x的i位表示第i行是否变换,理解就行), ...
- Codeforces663E Binary Table(FWT)
题目 Source http://codeforces.com/contest/663/problem/E Description You are given a table consisting o ...
随机推荐
- python全栈开发-面向对象-进阶
python_day_18 1,面向对象的三大特性是什么?继承,多态,封装2,什么是面向对象的新式类?什么是经典类?凡是继承object类都是新式类.凡是不继承object类都是经典类.3,面向对象为 ...
- python全栈开发-面向对象-初识
python_16_day 函数总结: https://www.processon.com/view/link/5b718274e4b0555b39e1055f 面向过程的程序设计的核心是过程(流水线 ...
- VIN码/车架号的详解,车架号识别,VIN码识别,OCR车架号识别能带来什么
各位车主在车检时不知道有没有注意到一件事,就是工作人员会打开车前盖在前围钢板上拓一张条码.下面来给大家介绍一下,这张条码就是VIN号,俗称钢印号,就像我们每个人都有自己的身份证号码一样,这也是汽车界的 ...
- Iterable/Iterator傻傻分不清
区别可迭代对象和迭代器 1.判断是否可以迭代 from collections import Iterabledef fid(times): n = 0 a , b = 0,1 while n < ...
- TW实习日记:第八天
今天早上主要是接着做昨天的微信端网页预览附件,听同事说当打包代码放入服务器上后,就不存在跨域问题了,也就懒得自己写接口了,那么就希望自己能一次过吧...结果写着写着,发现开发文档中关于预览文件的方法, ...
- 我想这次我真的理解了 JavaScript 的单线程机制
今天面试的时候被问到一个问题,是关于 JS 异步的.当时我脑海中闪过了一个单线程的概念,但却没有把真正的原理阐述清楚.所以回来特意重新回顾了前面单线程和异步相关的一些知识点. 虽然之前学习的时候也接触 ...
- String中intern()方法
intren方法:通俗的讲,是将字符串放入常量池中. new出来的字符串是放在堆中,直接赋值的字符串是放在常量池中的. 对字符串做拼接操作,即做“+”运算,分两种情况 (1)表达式右边是纯字符串常量, ...
- 【RL系列】SARSA算法的基本结构
SARSA算法严格上来说,是TD(0)关于状态动作函数估计的on-policy形式,所以其基本架构与TD的$v_{\pi}$估计算法(on-policy)并无太大区别,所以这里就不再单独阐述之.本文主 ...
- GitLab 搭建与使用
操作系统:Centos 7 环境:VM虚拟机 0x00:这里说下VM 虚拟机的配置 然后选择NAT模式 接下来配置网络 cd /etc/sysconfig/network-scripts/ 编辑:vi ...
- 华为ensp使用
网络学习目录 AR是() Auto:自动线 copper:双绞线缆 serial:串行线 pos: 光纤 E1: ATM: CTL: STA: PC: MCS ...