【刷题】洛谷 P3807 【模板】卢卡斯定理
题目背景
这是一道模板题。
题目描述
给定\(n,m,p( 1\le n,m,p\le 10^5)\)
求 \(C_{n+m}^{m}\ mod\ p\)
保证 \(p\) 为prime
\(C\) 表示组合数。
一个测试点内包含多组数据。
输入输出格式
输入格式:
第一行一个整数 \(T( T\le 10 )\),表示数据组数
第二行开始共 \(T\) 行,每行三个数 \(n,m,p\),意义如上
输出格式:
共T行,每行一个整数表示答案。
输入输出样例
输入样例#1:
2
1 2 5
2 1 5
输出样例#1:
3
3
题解
卢卡斯定理的模板题
\]
具体应用就是预处理模数的fac和inv,然后两个组合数中后面那个肯定可以用预处理的算,前面那个如果 \(n\) 或 \(m\) 还是比模数大,就一直递归下去。注意,当 \(n\) 小于 \(m\) 时,返回0
证明看这里
那这道题就裸啦
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXP=100000+10;
ll fac[MAXP],inv[MAXP];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline ll qexp(ll a,ll b,int n)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%n;
a=a*a%n;
b>>=1;
}
return res;
}
inline void init(int p)
{
fac[0]=1;
for(register int i=1;i<p;++i)fac[i]=1ll*fac[i-1]*i%p;
inv[p-1]=qexp(fac[p-1],p-2,p);
for(register int i=p-2;i>=0;--i)inv[i]=1ll*inv[i+1]*(i+1)%p;
}
inline ll C(ll n,ll m,int p)
{
if(n<m)return 0;
if(n<p&&m<p)return fac[n]*inv[m]%p*inv[n-m]%p;
else return C(n/p,m/p,p)*C(n%p,m%p,p)%p;
}
int main()
{
int T;
read(T);
while(T--)
{
int n,m,p;
read(n);read(m);read(p);
init(p);
write(C(n+m,m,p),'\n');
}
return 0;
}
【刷题】洛谷 P3807 【模板】卢卡斯定理的更多相关文章
- 洛谷.3807.[模板]卢卡斯定理(Lucas)
题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷——P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...
- 洛谷 P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...
- 【洛谷P3807】(模板)卢卡斯定理
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
随机推荐
- OpenStack入门篇(五)之KVM性能优化及IO缓存介绍
1.KVM的性能优化,介绍CPU,内存,IO性能优化 KVM CPU-->qemu进行模拟ring 3-->用户应用 (用户态,用户空间)ring 0-->操作系统 (内核态,内核空 ...
- Linux安装gitlab
一.GitLab 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具,并在此基础上搭建起来的web服务.安装方法是参考GitLab在GitHub上的Wiki页面. 二.我相信使用过git的开 ...
- 查询数据库所有表和字段及其注释(mysql)
#查询某个库所有表 select * from information_schema.TABLES where table_schema = '数据库' #查询某个库所有表的字段 select * f ...
- 十、Django之Admin
一.Django Admin 管理工具 Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.你可以在项目的 settings.py 中 ...
- EOJ3134. 短信激活码(大数幂取模)
题面 输入只有5位,所以转化为long long类型用快速幂取模 前面补0的写法printf("%05lld\n",ans);如果ans不足5位会在前面补0 #include< ...
- ESP8266 station模式下建立client、server TCP连接
程序实现内容: 1.在station模式下,ESP8266作为client.server进行TCP连接2.实现数据的发送.接收(同时回传)实现思路:TCP网络通信分层为:应用层.网络层.数据链路层.物 ...
- Power Designer逆向工程导入Oracle表,转为模型加注释
1.打开PowerDesigner ——文件——Reverse Engineer——DataBase 2.选择所要连接数据库版本,此处使用的是oracle version 11g. 3.点击红色区域, ...
- MySql面试题(持续更新)
1. 左连接,右连接,内连接的概念. 左连接:以左表为主,保留左表的所有数据,并且依次拿每行数据去匹配右表所有行,如果没匹配的,右边表的数据为null. 右连接:以右表为主,保留右表的所有数据,并且依 ...
- Python 中的实用数据挖掘
本文是 2014 年 12 月我在布拉格经济大学做的名为‘ Python 数据科学’讲座的笔记.欢迎通过 @RadimRehurek 进行提问和评论. 本次讲座的目的是展示一些关于机器学习的高级概念. ...
- FPGA的过去,现在和未来
我们知道,相对于专业的ASIC,FPGA有上市时间和成本上的优势.另外,在大多数情况下,FPGA执行某些功能较之CPU上的软件操作更高效.这就是为什么我们认为它不但会运用在数据中心的服务器.交换器.存 ...