题目背景

这是一道模板题。

题目描述

给定\(n,m,p( 1\le n,m,p\le 10^5)\)

求 \(C_{n+m}^{m}\ mod\ p\)

保证 \(p\) 为prime

\(C\) 表示组合数。

一个测试点内包含多组数据。

输入输出格式

输入格式:

第一行一个整数 \(T( T\le 10 )\),表示数据组数

第二行开始共 \(T\) 行,每行三个数 \(n,m,p\),意义如上

输出格式:

共T行,每行一个整数表示答案。

输入输出样例

输入样例#1:

2

1 2 5

2 1 5

输出样例#1:

3

3

题解

卢卡斯定理的模板题

\[\bigg(\begin{matrix} m \\ n \end{matrix}\bigg) \mod p=\bigg(\begin{matrix} m/p \\ n/p \end{matrix}\bigg)\bigg(\begin{matrix} m\mod p \\ n~\mod p \end{matrix}\bigg) \mod p
\]

具体应用就是预处理模数的fac和inv,然后两个组合数中后面那个肯定可以用预处理的算,前面那个如果 \(n\) 或 \(m\) 还是比模数大,就一直递归下去。注意,当 \(n\) 小于 \(m\) 时,返回0

证明看这里

那这道题就裸啦

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXP=100000+10;
ll fac[MAXP],inv[MAXP];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline ll qexp(ll a,ll b,int n)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%n;
a=a*a%n;
b>>=1;
}
return res;
}
inline void init(int p)
{
fac[0]=1;
for(register int i=1;i<p;++i)fac[i]=1ll*fac[i-1]*i%p;
inv[p-1]=qexp(fac[p-1],p-2,p);
for(register int i=p-2;i>=0;--i)inv[i]=1ll*inv[i+1]*(i+1)%p;
}
inline ll C(ll n,ll m,int p)
{
if(n<m)return 0;
if(n<p&&m<p)return fac[n]*inv[m]%p*inv[n-m]%p;
else return C(n/p,m/p,p)*C(n%p,m%p,p)%p;
}
int main()
{
int T;
read(T);
while(T--)
{
int n,m,p;
read(n);read(m);read(p);
init(p);
write(C(n+m,m,p),'\n');
}
return 0;
}

【刷题】洛谷 P3807 【模板】卢卡斯定理的更多相关文章

  1. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  2. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 洛谷——P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...

  5. 洛谷 P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...

  6. 【洛谷P3807】(模板)卢卡斯定理

    卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...

  7. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  8. [洛谷P4720] [模板] 扩展卢卡斯

    题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...

  9. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

随机推荐

  1. Windows下python环境的安装

    1.下载安装包 https://www.python.org/downloads/ 2.安装 默认安装路径:C:\python27 3.配置环境变量 [右键计算机]-->[属性]-->[高 ...

  2. JS 判断checkbox 是否选中

    <input type="checkbox" id="IsEnable" /> 在调试的时候,会出现,一直未true的状态,不管是选中还是未选中 解 ...

  3. java生成pdf

    介绍 本篇博客主要是为了介绍如何使用:flying-saucer+itext+freemark实现导出复杂点的pdf文件. 思路 先把pdf的内容以html形式准备好 使用freemarker将htm ...

  4. Windows环境下php开启GD库的方法

    一.GD库是什么? GD库是php处理图形的扩展库,GD库提供了一系列用来处理图片的API,使用GD库可以处理图片,或者生成图片,也可以给图片加水印.在网站上GD库通常用来生成缩略图,或者用来对图片加 ...

  5. python全栈开发-前方高能-生成器和生成器表达式

    python_day_13 今日主要内容1. 生成器和生成器函数生成器的本质就是迭代器生成器的三种创建办法: 1.通过生成器函数 2.通过生成器表达式创建生成器 3.通过数据转换 生成器函数: 函数中 ...

  6. 日本IT行业劳动力缺口达22万 在日中国留学生迎来就业好时机 2017/07/18 11:25:09

    作者:倪亚敏 来源:日本新华侨报 发布时间:2017/07/18 11:25:09     据日本政府提供的数据,日本2018年应届毕业生的“求人倍率”已经达到了1.78倍.换言之,就是100名大学生 ...

  7. android点击事件的四种方式

    android点击事件的四种方式 第一种方式:创建内部类实现点击事件 代码如下: package com.example.dail; import android.text.TextUtils; im ...

  8. php爬虫学习笔记1 PHP Simple HTML DOM Parser

    常用爬虫. 0. Snoopy是什么? (下载snoopy)   Snoopy是一个php类,用来模仿web浏览器的功能,它能完成获取网页内容和发送表单的任务.   Snoopy的一些特点:   * ...

  9. C++ STL栈和队列

    在C++标准库(STL)中,实现了栈和队列,方便使用,在这里我整理了一下笔记,作简要介绍. 1,栈(stack): 头文件 : #include<stack> 定义栈 :stack< ...

  10. 《C》变量

    变量的存储方式和生存周期