递归--练习2--noi6261汉诺塔
递归--练习2--noi6261汉诺塔
一、心得
先把递推公式写出来,会很简单的
二、题目
6261:汉诺塔问题
- 总时间限制:
- 1000ms
- 内存限制:
- 65536kB
- 描述
-
约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到中间的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。
这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615
这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算机解决64层的汉诺塔。假定圆盘从小到大编号为1, 2, ...
- 输入
- 输入为一个整数后面跟三个单字符字符串。
整数为盘子的数目,后三个字符表示三个杆子的编号。 - 输出
- 输出每一步移动盘子的记录。一次移动一行。
每次移动的记录为例如 a->3->b 的形式,即把编号为3的盘子从a杆移至b杆。 - 样例输入
-
2 a b c
- 样例输出
-
a->1->c
a->2->b
c->1->b
三、AC代码
/*
noi6261汉诺塔问题
Hanoi(n-1,a,c,b);
cout<<a<<"->"<<n<<"->"<<b<<endl;
Hanoi(n-1,c,b,a);
边界条件:
n==1
*/
#include <iostream>
using namespace std;
//将n个盘子从a经过c移动到b
void Hanoi(int n,char a,char b,char c){
if(==n) cout<<a<<"->"<<<<"->"<<b<<endl;
else{
Hanoi(n-,a,c,b);
cout<<a<<"->"<<n<<"->"<<b<<endl;
Hanoi(n-,c,b,a);
} }
int main(){
int n;
char a,b,c;
cin>>n>>a>>b>>c;
Hanoi(n,a,b,c);
return ;
}
递归--练习2--noi6261汉诺塔的更多相关文章
- JAVA递归算法及经典递归例子 对于这个汉诺塔问题
前言:递归(recursion):递归满足2个条件 1)有反复执行的过程(调用自身) 2)有跳出反复执行过程的条件(递归出口) 第一题:汉诺塔 对于这个汉诺塔问题,在写递归时,我们只需要确定两个条件: ...
- C#中汉诺塔问题的递归解法
百度测试部2015年10月份的面试题之——汉诺塔. 汉诺塔就是将一摞盘子从一个塔转移到另一个塔的游戏,中间有一个用来过度盘子的辅助塔. 百度百科在此. 游戏试玩在此. 用递归的思想解决汉诺塔问题就是分 ...
- python汉诺塔问题的递归理解
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下 ...
- [Python3 练习] 006 汉诺塔2 非递归解法
题目:汉诺塔 II 接上一篇 [Python3 练习] 005 汉诺塔1 递归解法 这次不使用递归 不限定层数 (1) 解决方式 利用"二进制" (2) 具体说明 统一起见 我把左 ...
- Conquer and Divide经典例子之汉诺塔问题
递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...
- [python]汉诺塔问题
相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏.该游戏是在一块铜板装置上,有三根杆(编号A.B.C),在A杆自下而上.由大到小按顺序放置64个金盘(如下图).游戏的目标:把A杆上的金盘全部 ...
- 算法笔记_013:汉诺塔问题(Java递归法和非递归法)
目录 1 问题描述 2 解决方案 2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...
- C#递归解决汉诺塔问题(Hanoi)
using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...
- "递归"实现"约瑟夫环","汉诺塔"
一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开 ...
随机推荐
- 循环赛日常表算法(N可为奇数和偶数)
一. 实验题目 设有n位选手参加网球循环赛,循环赛共进行n-1天,每位选手要与其他n-1位选手比赛一场,且每位选手每天必须比赛一场,不能轮空.试按此要求为比赛安排日程. 二.实验目的 1.深刻理解并掌 ...
- [Gradle] 输出构建 APK 的版本名到文件
android { // 输出版本名到 build 目录下的 version_name.txt 文件 applicationVariants.all { variant -> project.t ...
- 设计模式之——Observer模式
Observer模式又叫做观察者模式,当观察对象状态发生变化的时候,就会通知给观察者.这种模式适用于根据对象状态进行响应的场景! 实例程序是一个输出数字的程序. 观察者Observer类用于每500m ...
- python基础之练习题(二)
九九乘法表 i = 0 #while 九九乘法表 j = 0 while i < 9: i += 1 while j<9: j += 1 sum = i + j total="% ...
- D. Little Artem and Dance---cf669D(模拟)
题目链接:http://codeforces.com/problemset/problem/669/D 给你n个数,一开始是1 2 3 4 5 6 ... n 这样的 现在有两个操作,第一个操作是所有 ...
- Python开发【笔记】:sort排序大法
浅谈排序 程序中经常用到排序函数,Python 提供了 sort 和 sorted 函数,一个原地排序,一个返回排序后的新结果 1.参数 函数原型: sort([cmp[, key[, reverse ...
- 内核通信之Netlink源码分析-用户内核通信原理3
2017-07-06 上节主讲了用户层通过netlink和内核交互的详细过程,本节分析下用户层接收数据的过程…… 有了之前基础知识的介绍,用户层接收数据只涉及到一个核心调用readmsg(), 其他的 ...
- Python 面向对象 类 __str__
class dog(object): def __init__(self,name): self.name = name d = dog('mike') print(d) # <__main__ ...
- python基础(基础数据类型)
一. 引子 1. 什么是数据 x=10,10是我们要存储的数据 2. 为何数据要分不同的类型 数据是用来表示状态的,不同的状态就应该用不同的类型的数据去表示 3.数据类型 数字 字符串 列表 元组 字 ...
- java猫和猫的名字
这篇文章之所以叫猫和猫的名字,是因为是以猫为案例来讲的 主要的内容就是java构造函数和参数的传递 class Animal { public static String name; Animal(S ...