嘟嘟嘟




本来我要写feng shui这道题的。然后网上都说什么半平面相交,于是我还得现学这个东西,就来刷这道模板题了。




所谓的半平面相交和高中数学的分数规划特别像。比如这道题,把每一条边看成一条有向直线,则合法的范围都是直线的右半部分,最后求交集。大概是每一次都取一半,所以就叫半平面相交吧。




\(O(n ^ 2)\)的做法很简单,我也只会\(O(n ^ 2)\)的。枚举每一条边,然后用这条边去切当前算出来的图形。

具体怎么切?一句话就是把这条直线左边的点全部扔掉。

放个伪代码就明白了:

for 每条边ai ai+1
if (ai在AB右边)
把ai加入答案
if (ai+1在AB左边) 把交点加入答案
else if(ai+1在AB右边) 把交点加入答案

至于判断左右,用叉积求又向面积就行了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = (ans << 1) + (ans << 3) + ch - '0'; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int n, m, cnt = 0;
struct Point
{
db x, y;
Point operator - (const Point& oth)const
{
return (Point){x - oth.x, y - oth.y};
}
db operator * (const Point& oth)const
{
return x * oth.y - oth.x * y;
}
Point operator * (const db& d)const
{
return (Point){x * d, y * d};
}
}p[maxn], a[maxn]; int tot = 0;
Point b[maxn];
db cross(Point A, Point B, Point C)
{
return (B - A) * (C - A);
}
void addCross(Point A, Point B, Point C, Point D)
{
db s1 = (C - A) * (D - A), s2 = (D - B) * (C - B);
b[++tot] = A - (A - B) * (s1 / (s1 + s2));
}
void cut(Point A, Point B)
{
tot = 0;
a[cnt + 1] = a[1];
for(int i = 1; i <= cnt; ++i)
{
if(cross(A, B, a[i]) >= 0)
{
b[++tot] = a[i];
if(cross(A, B, a[i + 1]) < 0) addCross(A, B, a[i], a[i + 1]);
}
else if(cross(A, B, a[i + 1]) > 0) addCross(A, B, a[i], a[i + 1]);
}
for(int i = 1; i <= tot; ++i) a[i] = b[i];
cnt = tot;
} int main()
{
n = read(); m = read();
for(int i = 1; i <= m; ++i) a[i].x = read(), a[i].y = read();
cnt = m; n--;
while(n--)
{
m = read();
for(int i = 1; i <= m; ++i) p[i].x = read(), p[i].y = read();
p[m + 1] = p[1];
for(int i = 1; i <= m; ++i) cut(p[i], p[i + 1]);
}
a[cnt + 1] = a[1];
db ans = 0;
for(int i = 1; i <= cnt; ++i) ans += a[i] * a[i + 1];
printf("%.3lf\n", ans / 2);
return 0;
}

[CQOI2006]凸多边形(半平面相交)的更多相关文章

  1. bzoj 2618: [Cqoi2006]凸多边形 [半平面交]

    2618: [Cqoi2006]凸多边形 半平面交 注意一开始多边形边界不要太大... #include <iostream> #include <cstdio> #inclu ...

  2. 洛谷 P4196 [CQOI2006]凸多边形 (半平面交)

    题目链接:P4196 [CQOI2006]凸多边形 题意 给定 \(n\) 个凸多边形,求它们相交的面积. 思路 半平面交 半平面交的模板题. 代码 #include <bits/stdc++. ...

  3. 【BZOJ 2618】 2618: [Cqoi2006]凸多边形 (半平面交)

    2618: [Cqoi2006]凸多边形 Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一 ...

  4. bzoj 2618 2618: [Cqoi2006]凸多边形(半平面交)

    2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 656  Solved: 340[Submit][Status] ...

  5. 2018.07.04 BZOJ 2618 Cqoi2006凸多边形(半平面交)

    2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MB Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n ...

  6. 【BZOJ2618】[CQOI2006]凸多边形(半平面交)

    [BZOJ2618][CQOI2006]凸多边形(半平面交) 题面 BZOJ 洛谷 题解 这个东西就是要求凸多边形的边所形成的半平面交. 那么就是一个半平面交模板题了. 这里写的是平方的做法. #in ...

  7. [CQOI2006]凸多边形(半平面交)

    很明显是一道半平面交的题. 先说一下半平面交的步骤: 1.用点向法(点+向量)表示直线 2.极角排序,若极角相同,按相对位置排序. 3.去重,极角相同的保留更优的 4.枚举边维护双端队列 5.求答案 ...

  8. 【半平面交】bzoj2618 [Cqoi2006]凸多边形

    #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define ...

  9. bzoj2618: [Cqoi2006]凸多边形

    Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一行有一个整数n,表示凸多边形的个数,以下依 ...

随机推荐

  1. 文件流FileStram类

    本节课主要学习三个内容: 创建FileStram流 读取流 写入流 文件流FileStram类,是用来实现对文件的读取和写入.FileStram是操作字节的字节数组,当提供向文件读取和写入字节的方法时 ...

  2. 【转】Windows 平台下 Go 语言的安装和环境变量设置

    1. Go 语言 SDK 安装包下载和安装 最新稳定版 1.5.3 安装包 go1.5.3.windows-amd64.msi下载地址 https://golang.org/dl/,大小约 69 MB ...

  3. 文件下载(Servlet/Struts2)

    文件上传(Servlet/Struts2/SpringMVC)的链接:http://www.cnblogs.com/ghq120/p/8312944.html 文件下载 Servlet实现 目录结构 ...

  4. C#学习笔记(基础知识回顾)之值类型与引用类型转换(装箱和拆箱)

    一:值类型和引用类型的含义参考前一篇文章 C#学习笔记(基础知识回顾)之值类型和引用类型 1.1,C#数据类型分为在栈上分配内存的值类型和在托管堆上分配内存的引用类型.如果int只不过是栈上的一个4字 ...

  5. Windows任务计划向远程服务器拷贝文件,报登录失败: 未知的用户名或错误密码

    问题产生很奇怪,当你登录到系统时,执行自动化作业是正常 但到了晚上凌晨自动执行作业时,则报登录失败: 未知的用户名或错误密码 解决方案: 在拷贝脚本中加及一行,创建net use 命名,每次文件拷贝前 ...

  6. 【SPOJ】MGLAR10 - Growing Strings

    Gene and Gina have a particular kind of farm. Instead of growing animals and vegetables, as it is us ...

  7. JavaWeb学习总结(五):HttpServletRespone对象(一)

    Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象.和代表响应的response对象.request和response对象即然代表请求和响应,那我们要 ...

  8. H5禁止手机自带键盘弹出

    一个功能中用到这个, 调用软键盘,  不想弹出手机默认的输入法 网上找了个 http://blog.csdn.net/qq_24147051/article/details/52958610 处理方式 ...

  9. python判断一个数字是整数还是浮点数&判断整除

    判断整数还是浮点数   >>> a=123 >>> b=123.123 >>> isinstance(a,int) True >>&g ...

  10. Java 中你必须了解的常用类(8)

    Java 中的包装类 相信各位小伙伴们对基本数据类型都非常熟悉,例如 int.float.double.boolean.char 等.基本数据类型是不具备对象的特性的, 比如基本类型不能调用方法.功能 ...