【[AHOI2008]逆序对】
被锤爆了
被这个题搞得自闭了一上午,觉得自己没什么前途了
我又没有看出来这个题的一个非常重要的性质
我们填进去的数一定是单调不降的
首先如果填进去的数并不是单调不降的,那么填进去本身就会产生一些逆序对,感性理解好像是单调不降更优,这里还是严谨证明一下吧
考虑一下树状数组求逆序对的过程,显然就是求出每一个数前面有多少个比它大的数

这张图好丑啊
设\(A<B\),\(x\)表示那段绿色区间里大于\(A\)的数,\(y\)表示绿色区间里大于\(B\)的数,\(a\)表示蓝色区间里大于\(A\)的数,\(b\)表示蓝色区间里大于\(B\)的数
这个时候我们如果用树状数组来统计一下答案的话,\(A,B\)的贡献就是\(x+y+b\)
如果交换一下\(A\)和\(B\)的位置,那么这个时候答案就会变成\(x+a+y+1\)
非常显然的是\(b<=a\),所以可以得出\(x+y+b<x+a+y+1\),所以不交换更优
之后有了这个性质,我们就可以做一个\(dp\)了,设\(dp[i][j]\)表示填到了\(i\)位置,最靠后的一个\(-1\)位置填了\(j\)这个时候的最小逆序对是多少
就可以一边树状数组一边\(dp\)了
复杂度\(O(nklogk)\)
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
#define lowbit(x) ((x)&(-x))
#define re register
#define maxn 100005
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();
int x=0,r=1;
while(c<'0'||c>'9')
{
if(c=='-') r=-1;
c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x*r;
}
LL c[105];
int n,m;
LL ans;
LL dp[maxn][101];
LL mx[101];
int pre[maxn];
int a[maxn];
int beh[maxn][101];
inline void add(int x)
{
for(re int i=x;i<=m;i+=lowbit(i)) c[i]++;
}
inline LL ask(int x)
{
LL now=0;
for(re int i=x;i;i-=lowbit(i)) now+=c[i];
return now;
}
int main()
{
int cnt=0;
n=read(),m=read();
for(re int i=1;i<=n;i++)
{
a[i]=read();
if(a[i]==-1&&!cnt) cnt=i;
pre[i]=pre[i-1]+(a[i]==-1);
}
if(!cnt) cnt=n+1;
for(re int i=1;i<cnt;i++)
{
ans+=ask(m)-ask(a[i]);
add(a[i]);
}
if(cnt==n+1)
{
std::cout<<ans;
return 0;
}
for(re int i=n;i;i--)
{
for(re int j=1;j<=m;j++)
beh[i][j]=beh[i+1][j];
if(a[i]==-1) continue;
for(re int j=a[i];j<=m;j++) beh[i][j]++;
}
memset(dp,20,sizeof(dp));
for(re int i=1;i<=m;i++)
dp[cnt][i]=ans+ask(m)-ask(i)+beh[cnt][i-1];
memset(mx,20,sizeof(mx));
for(re int j=1;j<=m;j++)
mx[j]=min(mx[j-1],dp[cnt][j]);
for(re int i=cnt+1;i<=n;i++)
{
if(a[i]!=-1)
{
LL now=ask(m)-ask(a[i]);
for(re int j=1;j<=m;j++)
dp[i][j]=now+dp[i-1][j];
add(a[i]);
}
else
{
for(re int j=1;j<=m;j++)
{
LL now=ask(m)-ask(j);
dp[i][j]=mx[j]+now+beh[i][j-1];
}
}
memset(mx,20,sizeof(mx));
for(re int j=1;j<=m;j++)
mx[j]=min(mx[j-1],dp[i][j]);
}
LL Ans=0x7ffffffff;
for(re int i=1;i<=m;i++)
Ans=min(Ans,dp[n][i]);
std::cout<<Ans;
return 0;
}
【[AHOI2008]逆序对】的更多相关文章
- BZOJ1831: [AHOI2008]逆序对
1831: [AHOI2008]逆序对 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 341 Solved: 226[Submit][Status] ...
- 【BZOJ1831】[AHOI2008]逆序对(动态规划)
[BZOJ1831][AHOI2008]逆序对(动态规划) 题面 BZOJ 洛谷 题解 显然填入的数拎出来是不降的. 那么就可以直接大力\(dp\). 设\(f[i][j]\)表示当前填到了\(i\) ...
- bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)
1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...
- BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对
这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #inclu ...
- 【BZOJ】1831: [AHOI2008]逆序对
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...
- [AHOI2008] 逆序对
link 我们可以很容易的推断出$-1$是单调不降的,若$i>j$且$a_i$与$a_j$都没有填数,若填完之后$a_i>a_j$或者$a_i<a_j$,则对答案产生影响的只在$[i ...
- 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)
题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...
- [AHOI2008]逆序对(dp)
小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为 ...
- BZOJ 1831: [AHOI2008]逆序对
题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...
随机推荐
- css的四种书写方式
优先级: 外部样式 < 内部样式表 < 内联样式表: 优先级,即:同名的选择器右边的会覆盖左边 1.内部样式表 <head> <style> /*内部样式表,一般用 ...
- MySQL---5、可视化工具Navicat for MySQL安装配置
一.安装文件包下载 Navicat for MySQL 安装软件和破解补丁: 链接:https://pan.baidu.com/s/1oKcErok_Ijm0CY9UjNMrnA 密码:4xb1 ...
- c# 旋转图片 无GDI+一般性错误
using (System.Drawing.Bitmap backgroudImg = System.Drawing.Bitmap.FromFile(DoubleClickPicInfo.FileNa ...
- [javaSE] IO流(管道流)
之前我们使用io流,都是需要一个中间数组,管道流可以直接输入流对接输出流,一般和多线程配合使用,当读取流中没数据时会阻塞当前的线程,对其他线程没有影响 定义一个类Read实现Runable接口,实现r ...
- 撩课-Web大前端每天5道面试题-Day5
1.写一个深度克隆方法(es5)? /** * 深拷贝 * @param {object}fromObj 拷贝的对象 * @param {object}toObj 目标对象 */ function d ...
- 领域模型(DomainModel)与视图模型(ViewModel)
Model-View-Controller(模型-视图-控制器,MVC)模式将你的软件组织并分解成三个截然不同的角色: Model 封装了你的应用数据.应用流程和业务逻辑. View 从 Model ...
- JavaWeb学习总结(八):HttpServletRequest对象
一.HttpServletRequest介绍 HttpServletRequest对象代表客户端的请求,当客户端通过HTTP协议访问服务器时,HTTP请求头中的所有信息都封装在这个对象中,通过这个对象 ...
- JavaWeb学习总结(二):Http协议
一.什么是HTTP协议 HTTP是hypertext transfer protocol(超文本传输协议)的简写,它是TCP/IP协议的一个应用层协议,用于定义WEB浏览器与WEB服务器之间交换数据的 ...
- CSS选择器:#id和.class中间有空格和无空格的区别
相信大家都知道 .class1 .class2 和 .class1.class2 是两种不同的选择规则,但具体怎样不同呢? 首先中间有空格的情况:是选择到.class1类下的.class2类子节点,即 ...
- canvas toDataURL() 方法如何生成部分画布内容的图片
HTMLCanvasElement.toDataURL() 方法返回一个包含图片展示的 data URI .可以使用 type参数其类型,默认为 PNG 格式.图片的分辨率为96dpi. 如果画布的高 ...