【[AHOI2008]逆序对】
被锤爆了
被这个题搞得自闭了一上午,觉得自己没什么前途了
我又没有看出来这个题的一个非常重要的性质
我们填进去的数一定是单调不降的
首先如果填进去的数并不是单调不降的,那么填进去本身就会产生一些逆序对,感性理解好像是单调不降更优,这里还是严谨证明一下吧
考虑一下树状数组求逆序对的过程,显然就是求出每一个数前面有多少个比它大的数

这张图好丑啊
设\(A<B\),\(x\)表示那段绿色区间里大于\(A\)的数,\(y\)表示绿色区间里大于\(B\)的数,\(a\)表示蓝色区间里大于\(A\)的数,\(b\)表示蓝色区间里大于\(B\)的数
这个时候我们如果用树状数组来统计一下答案的话,\(A,B\)的贡献就是\(x+y+b\)
如果交换一下\(A\)和\(B\)的位置,那么这个时候答案就会变成\(x+a+y+1\)
非常显然的是\(b<=a\),所以可以得出\(x+y+b<x+a+y+1\),所以不交换更优
之后有了这个性质,我们就可以做一个\(dp\)了,设\(dp[i][j]\)表示填到了\(i\)位置,最靠后的一个\(-1\)位置填了\(j\)这个时候的最小逆序对是多少
就可以一边树状数组一边\(dp\)了
复杂度\(O(nklogk)\)
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
#define lowbit(x) ((x)&(-x))
#define re register
#define maxn 100005
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();
int x=0,r=1;
while(c<'0'||c>'9')
{
if(c=='-') r=-1;
c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x*r;
}
LL c[105];
int n,m;
LL ans;
LL dp[maxn][101];
LL mx[101];
int pre[maxn];
int a[maxn];
int beh[maxn][101];
inline void add(int x)
{
for(re int i=x;i<=m;i+=lowbit(i)) c[i]++;
}
inline LL ask(int x)
{
LL now=0;
for(re int i=x;i;i-=lowbit(i)) now+=c[i];
return now;
}
int main()
{
int cnt=0;
n=read(),m=read();
for(re int i=1;i<=n;i++)
{
a[i]=read();
if(a[i]==-1&&!cnt) cnt=i;
pre[i]=pre[i-1]+(a[i]==-1);
}
if(!cnt) cnt=n+1;
for(re int i=1;i<cnt;i++)
{
ans+=ask(m)-ask(a[i]);
add(a[i]);
}
if(cnt==n+1)
{
std::cout<<ans;
return 0;
}
for(re int i=n;i;i--)
{
for(re int j=1;j<=m;j++)
beh[i][j]=beh[i+1][j];
if(a[i]==-1) continue;
for(re int j=a[i];j<=m;j++) beh[i][j]++;
}
memset(dp,20,sizeof(dp));
for(re int i=1;i<=m;i++)
dp[cnt][i]=ans+ask(m)-ask(i)+beh[cnt][i-1];
memset(mx,20,sizeof(mx));
for(re int j=1;j<=m;j++)
mx[j]=min(mx[j-1],dp[cnt][j]);
for(re int i=cnt+1;i<=n;i++)
{
if(a[i]!=-1)
{
LL now=ask(m)-ask(a[i]);
for(re int j=1;j<=m;j++)
dp[i][j]=now+dp[i-1][j];
add(a[i]);
}
else
{
for(re int j=1;j<=m;j++)
{
LL now=ask(m)-ask(j);
dp[i][j]=mx[j]+now+beh[i][j-1];
}
}
memset(mx,20,sizeof(mx));
for(re int j=1;j<=m;j++)
mx[j]=min(mx[j-1],dp[i][j]);
}
LL Ans=0x7ffffffff;
for(re int i=1;i<=m;i++)
Ans=min(Ans,dp[n][i]);
std::cout<<Ans;
return 0;
}
【[AHOI2008]逆序对】的更多相关文章
- BZOJ1831: [AHOI2008]逆序对
1831: [AHOI2008]逆序对 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 341 Solved: 226[Submit][Status] ...
- 【BZOJ1831】[AHOI2008]逆序对(动态规划)
[BZOJ1831][AHOI2008]逆序对(动态规划) 题面 BZOJ 洛谷 题解 显然填入的数拎出来是不降的. 那么就可以直接大力\(dp\). 设\(f[i][j]\)表示当前填到了\(i\) ...
- bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)
1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...
- BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对
这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #inclu ...
- 【BZOJ】1831: [AHOI2008]逆序对
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...
- [AHOI2008] 逆序对
link 我们可以很容易的推断出$-1$是单调不降的,若$i>j$且$a_i$与$a_j$都没有填数,若填完之后$a_i>a_j$或者$a_i<a_j$,则对答案产生影响的只在$[i ...
- 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)
题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...
- [AHOI2008]逆序对(dp)
小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为 ...
- BZOJ 1831: [AHOI2008]逆序对
题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...
随机推荐
- HTML5--(1)兼容前缀+结构性标签+语义化标签
一.兼容前缀+兼容写法 兼容前缀 1.HTML5有部分类容兼容到IE9,IE8及以下完全不兼容的内容不再考虑. 2.部分内容需要加兼容前缀 a) -webkit- 兼容谷歌 b) -m ...
- [javaSE] 数据结构(栈)
栈(stack)是一种线性存储结构,有以下特点: 1.栈中数据是按照先进后出的方式进出栈的 2.向栈中添加删除元素时,只能从栈顶进行操作 使用数组实现栈 定义一个类ArrayStack 实现入栈方法p ...
- JAVA基础之——版本控制系统之git
1 版本控制系统是什么 当多人协作开发一套产品时,需要能够保证代码都能够共用,那么版本控制系统就应运而生. 2 GIT 当前用的比较多的是svn和git,本文以git为例进行讲解. git诞生于200 ...
- MSSQL中的表变量
最近在看<Microsoft SQL Server2005技术内幕:T-SQL程序设计> 1.表变量的事务上下文中提到,表变量不受外部事务回滚影响. 举个例子: DECLARE @TA ...
- WinForm实现Rabbitmq官网6个案例-Routing
代码: namespace RabbitMQDemo { public partial class Routing : Form { private string exchangeName = &qu ...
- 【MFC】CDialogBar中按钮不可用
现象展示: 具体原因: A button in a CDialogBar object is disabled automatically if the command routing does no ...
- webstorm 打开后 一直停留在scanning files to index....,或跳出内存不够的提示框
用着有时会这样,超级卡, 网上搜了下,原来如此,记录下,免得忘了. ------------------------- 说明: 在npm install 后,会出现Scanning files to ...
- Maximum Depth of Binary Tree 二叉树的深度
Given a binary tree,find its maximum depth. The maximum depth is the number of nodes along the longe ...
- JS Error 内置异常类型 处理异常 Throw语句
Exceptional Exception Handling in JavaScript MDN资料 Anything that can go wrong, will go wrong. ...
- 检查 NaN 数据值 (C/C++/Python 实现)
NaN 是 Not a Number 的缩写.它是一个数值类型值,通常在浮点计算中,表示未定义或无法表示的值.而且,不能直接使用相等运算符 (==) 检查 NaN.由于在程序中,nan == nan ...