题意

你有n个数字,范围[1, m],你可以选择其中的三个数字构成一个三元组,但是这三个数字必须是连续的或者相同的,每个数字只能用一次,问这n个数字最多构成多少个三元组?

分析

根据官方Editorial的说法,似乎没有一个真正正确的贪心(但是说不定就有人乱搞出来了)。这里用dp来解决问题。

这种dp题目我没做过,这次涨姿势了。首先要搞明白一个事实:我们完全可以保证构建一个最优解,其中连续的三元组对于每个数不会出现超过两个——因为如果出现超过三个,就可以拆分成三个相同组。在这样的前提下,我们就可以构建状态了。

进一步思考状态怎么得到的。对于第i个数,与之的相关的顺子有\([i-2,i-1,i],[i-1,i,i+1],[i,i+1,i+2]\),而全考虑是不必要的,重复了。选择两种状态考虑转移即可,这里考虑\([i-1,i,i+1]\)和\([i,i+1,i+2]\)。

暴力枚举他们分别有几种可能的情况(前面说了只有0,1,2三种情况),然后考虑转移,它们如何从i移动到i+1为center?那得看有几个i+1:记\(dp[i][j][k]\)为前i个数有j个第一种顺子和k种第二个顺子,那么就会剩下\(cnt[i+1]-j-k\)个i+1。我们不去考虑后面的i+2,i+3到底存不存在(因为如果不存在,后面推导的时候将只会更新j=0,k=0的情况),直接思考这些i+1分别会产生多少种顺子——暴力枚举产生0,1,2种连顺子(\([i+1,i+2,i+3]\))即可。这样就能写出具体的状态转移方程了。具体见代码。

这样一来,这题就能得到解决。如果内存要求苛刻,可以使用滚动数组解决(提示:计算结果用到的结果并不多)。

代码

#include <bits/stdc++.h>

#define INF 0x3f3f3f3f
#define PB emplace_back
#define MP make_pair
#define fi first
#define se second
#define rep(i,a,b) for(repType i=(a); i<=(b); ++i)
#define per(i,a,b) for(repType i=(a); i>=(b); --i)
#define ZERO(x) memset(x, 0, sizeof(x))
#define MS(x,y) memset(x, y, sizeof(x))
#define ALL(x) (x).begin(), (x).end() #define QUICKIO \
ios::sync_with_stdio(false); \
cin.tie(0); \
cout.tie(0);
#define DEBUG(...) fprintf(stderr, __VA_ARGS__), fflush(stderr) using namespace std;
using pi=pair<int,int>;
using repType=int;
using ll=long long;
using ld=long double;
using ull=unsigned long long; const int MAXN = 100005;
int cnt[MAXN], dp[MAXN][3][3]; int main()
{
int n,m; cin>>n>>m;
ZERO(cnt);
rep(i,1,n)
{
int tmp; cin>>tmp;
cnt[tmp]++;
}
MS(dp, -1);
dp[0][0][0]=0; rep(i,0,m+1)
{
rep(j,0,2)
{
rep(k,0,2)
{
if(dp[i][j][k]<0) continue;
int now=cnt[i+1]-j-k;
for(int t=0; t<=2 && t<=now; ++t)
{
dp[i+1][k][t] = max(dp[i+1][k][t], dp[i][j][k]+(now-t)/3+t);
}
}
}
}
cout<<dp[m+1][0][0]<<endl;
return 0;
}

「日常训练」Jongmah(Codeforces-1110D)的更多相关文章

  1. 「日常训练」ZgukistringZ(Codeforces Round #307 Div. 2 B)

    题意与分析(CodeForces 551B) 这他妈哪里是日常训练,这是日常弟中弟. 题意是这样的,给出一个字符串A,再给出两个字符串B,C,求A中任意量字符交换后(不限制次数)能够得到的使B,C作为 ...

  2. 「日常训练」Watering Flowers(Codeforces Round #340 Div.2 C)

    题意与分析 (CodeForces 617C) 题意是这样的:一个花圃中有若干花和两个喷泉,你可以调节水的压力使得两个喷泉各自分别以\(r_1\)和\(r_2\)为最远距离向外喷水.你需要调整\(r_ ...

  3. 「日常训练」Alternative Thinking(Codeforces Round #334 Div.2 C)

    题意与分析 (CodeForces - 603A) 这题真的做的我头疼的不得了,各种构造样例去分析性质... 题意是这样的:给出01字符串.可以在这个字符串中选择一个起点和一个终点使得这个连续区间内所 ...

  4. 「日常训练」More Cowbell(Codeforces Round #334 Div.2 B)

    题意与分析(CodeForces 604B) 题意是这样的:\(n\)个数字,\(k\)个盒子,把\(n\)个数放入\(k\)个盒子中,每个盒子最多只能放两个数字,问盒子容量的最小值是多少(水题) 不 ...

  5. 「日常训练」Duff in the Army (Codeforces Round #326 Div.2 E)

    题意(CodeForces 588E) 给定一棵\(n\)个点的树,给定\(m\)个人(\(m\le n\))在哪个点上的信息,每个点可以有任意个人:然后给\(q\)个询问,每次问\(u\)到\(v\ ...

  6. 「日常训练」Kefa and Dishes(Codeforces Round #321 Div. 2 D)

    题意与分析(CodeForces 580D) 一个人有\(n\)道菜,然后要点\(m\)道菜,每道菜有一个美味程度:然后给你了很多个关系,表示如果\(x\)刚好在\(y\)前面做的话,他的美味程度就会 ...

  7. 「日常训练」Kefa and Park(Codeforces Round #321 Div. 2 C)

    题意与分析(CodeForces 580C) 给你一棵树,然后每个叶子节点会有一家餐馆:你讨厌猫(waht?怎么会有人讨厌猫),就不会走有连续超过m个节点有猫的路.然后问你最多去几家饭店. 这题我写的 ...

  8. 「日常训练」Kefa and Company(Codeforces Round #321 Div. 2 B)

    题意与分析(CodeForces 580B) \(n\)个人,告诉你\(n\)个人的工资,每个人还有一个权值.现在从这n个人中选出m个人,使得他们的权值之和最大,但是对于选中的人而言,其他被选中的人的 ...

  9. 「日常训练」Case of Matryoshkas(Codeforces Round #310 Div. 2 C)

    题意与分析(CodeForces 556C) 为了将所有\(n\)个娃娃编号递增地串在一起(原先是若干个串,每个串是递增的), 我们有两种操作: 拆出当前串中最大编号的娃娃(且一定是最右边的娃娃). ...

随机推荐

  1. 移动端h5列表页上拉加载更多

    背景 上星期公司要求做一个回收书籍的h5给安卓用,里面有一个功能是回收记录列表.设计师那边出的稿子是没有要求分页或者是上拉刷新的,但是众所周知,列表页数据很多的情况下,h5加载是很慢的.所以我一开始是 ...

  2. PAT——1019. 数字黑洞

    给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字.一直重复这样做,我们很快会停在有“数字黑洞”之称的6174 ...

  3. linux 下线程错误查找,与线程分析命令

    一. 使用top和jstack查找线程错误 我们使用jdk自带的jstack来分析.当linux出现cpu被java程序消耗过高时,以下过程说不定可以帮上你的忙: 1.top查找出哪个进程消耗的cpu ...

  4. 全面理解 ASP.NET Core 依赖注入 (转载)

    DI在.NET Core里面被提到了一个非常重要的位置, 这篇文章主要再给大家普及一下关于依赖注入的概念,身边有工作六七年的同事还个东西搞不清楚.另外再介绍一下.NET  Core的DI实现以及对实例 ...

  5. 使用JedisCluster出现异常:java.lang.NumberFormatException

    在使用JedisCluster进行测试时出现如下异常: java.lang.NumberFormatException: For input string: "7004@17004" ...

  6. Redis基本讲解

    Redis基本讲解 首先我们要了解redis的使用试用范围,redis不像数据库能建立关系型的数据结构,除了有序集合能关联一个double类型的分数其它的几种都是单一存储的,所以他的局限性就比较高了, ...

  7. RunLoop 之初探

    你好2019!一起努力呀! 1.什么是runloop runloop是通过内部维护的事件循环对事件/消息进行管理的一个对象. 事件循环(Event loop):通俗的解释:没有消息处理的时候,休眠以避 ...

  8. python3爬虫-通过requests获取拉钩职位信息

    import requests, json, time, tablib def send_ajax_request(data: dict): try: ajax_response = session. ...

  9. 在javascript中什么是伪数组,如何将伪数组转化为标准数组?

    这里把符合以下条件的对象称为伪数组: 1.具有length属性 2.按索引方式存储数据 3.不具有数组的push.pop等方法 伪数组(类数组):无法直接调用数组方法或期望length属性有什么特殊的 ...

  10. 10JavaScript作用域

    (作用域可访问变量的集合) 1.JavaScript 作用域 在 JavaScript 中, 对象和函数同样也是变量. 在 JavaScript 中, 作用域为可访问变量,对象,函数的集合. Java ...