石子合并

时间限制:1000 ms  |  内存限制:65535 KB

描述
有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值和最大值。

输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开

输出
输出总代价的最小值以及最大值(中间以空格隔开),占单独的一行

样例输入
3
1 2 3
7
13 7 8 16 21 4 18

样例输出
9 11
239 365

思路:

该题为区间DP好题,这里简单谈一谈区间DP : 

  区间DP,就是在某一区间内满足某个性质,比如最简单的最大最小,一般区间dp有明显的区间性,区别一些线性DP,线性DP每个状态都由前一个转移而来,区间dp也是,但是是由前面区间转移而来,区间dp一般问的是某个区间的某个性质,区间dp从区间是1,是2,是3一步一步转化过来,区间为2就是两个区间为1相加,这样所有区间为2的都就转移出来,如果区间为4的,可能是区间1和区间3,也可能是区间2和区间2,因为区间1区间2区间3所有情况都枚举过,所以直接枚举转移就好,简单的区间dp代码有很强的套路性。(看完可能不认识“区”这个字了= =)

  区间动规一般都是三层for循环, 前两层用来控制区间长度, 最后一层用来枚举区间内最后一次的位置, 还有需要注意的是区间要从小到大, 因为动态规划就是后面得用到前面得出的结果递推后面的结果。

状态转移方程

dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[i][j]);

/

dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+1][j]+sum[i][j]);

AC code:

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<string>
#include<queue>
#include<utility>
using namespace std;
typedef long long ll;
const int MX = 1e2+7;
const int INF = 0x3f3f3f3f;
int dp1[MX][MX],dp2[MX][MX],sum[MX][MX];
int n,a[MX]; int main(int argc, char const *argv[])
{
while(~scanf("%d",&n))
{
//一定要记得初始化
memset(dp1,0,sizeof(dp1));
memset(dp2,0,sizeof(dp2));
memset(sum,0,sizeof(sum));
for(int i = 1;i <= n;i++)
{
scanf("%d",&a[i]);
sum[i][i] = a[i];
}
for(int i = 1;i <= n;i++)
for(int j = i;j <= n;j++)
dp1[i][j] = i == j ? 0 : INF;//dp[i][i]只有一个数字无法合并,代价为0
for(int len = 1;len < n;len++)//枚举区间长度
{
for(int i = 1;i + len <= n;i++)//枚举区间起点
{
int j = i + len;//枚举区间终点
for(int k = i;k < j;k++)//枚举区间断点
{
sum[i][j] = sum[i][k]+sum[k+1][j];//sum[i][j]是用来储存i~j石子总数,一般写法是用前缀和计算,这里同样采用动态规划
dp1[i][j] = min(dp1[i][j],dp1[i][k]+dp1[k+1][j]+sum[i][j]);
dp2[i][j] = max(dp2[i][j],dp2[i][k]+dp2[k+1][j]+sum[i][j]);
}
}
}
printf("%d %d\n",dp1[1][n],dp2[1][n]);
}
return 0;
}

  

直线石子合并(区间DP)的更多相关文章

  1. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  2. 石子合并 区间dp模板

    题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...

  3. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  4. HDU 3506 (环形石子合并)区间dp+四边形优化

    Monkey Party Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Tot ...

  5. 石子合并 区间DP模板题

    题目链接:https://vjudge.net/problem/51Nod-1021 题意 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石 ...

  6. 洛谷 P1080 石子合并 ( 区间DP )

    题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...

  7. 石子合并——区间dp

    石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...

  8. 洛谷P1880 石子合并(环形石子合并 区间DP)

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  9. HRBUST - 1818 石子合并 区间dp入门

    有点理解了进阶指南上说的”阶段,状态和决策“ /* 区间dp的基础题: 以区间长度[2,n]为阶段,枚举该长度的区间,状态dp[l][r]表示合并区间[l,r]的最小费用 状态转移方程dp[l][r] ...

  10. P1880 [NOI1995]石子合并 区间dp+拆环成链

    思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...

随机推荐

  1. a、button、input点击获取焦点时出现蓝色边框,如何去掉

    a,button,input{ -webkit-tap-highlight-color: rgba(0, 0, 0, 0); -webkit-user-modify: read-write-plain ...

  2. OpenID Connect Core 1.0(八)从第三方发起登录

    在某些情况下,登录流程由一个OpenID提供者或其他方发起,而不是依赖方(RP).在这种情况下,发起者重定向到RP在发起登录终结点,RP的请求验证请求发送到指定的OP.这个发起登录终结点可以在RP深度 ...

  3. C# char[]与string互相转换的两种方法

    1.string转换为char[]:char[] string.ToCharArray(); static void Main(string[] args)        {            s ...

  4. 每天一个linux命令(1):find命令之exec

    ind是我们很常用的一个Linux命令,但是我们一般查找出来的并不仅仅是看看而已,还会有进一步的操作,这个时候exec的作用就显现出来了. exec解释:-exec 参数后面跟的是command命令, ...

  5. [已解决]Vistual Stdio 2015 installer Bootstrapper Packages 路径

    VS2015 installer 的预装包的地址变更成 C:\Program Files (x86)\Microsoft Visual Studio 14.0\SDK\Bootstrapper\Pac ...

  6. doctrine 操作实例(转)

    话说这篇文章真是在没有任何实例的情况下帮了大忙 另外附上我自己的一个完整demo:https://github.com/LearnForInterest/material 结合了ci框架的doctri ...

  7. Spring Web Async异步处理#Callable #DeferredResult

    Spring MVC 对于异步请求处理的两种方式 场景: Tomcat对于主线程性能瓶颈,当Tomcat请求并发数过多时,当线程数满时,就会出现请求等待Tomcat处理,这个时候可以使用子线程处理业务 ...

  8. 大数据时代数据库-云HBase架构&生态&实践

    业务的挑战 存储量量/并发计算增大 现如今大量的中小型公司并没有大规模的数据,如果一家公司的数据量超过100T,且能通过数据产生新的价值,基本可以说是大数据公司了 .起初,一个创业公司的基本思路就是首 ...

  9. AvalonEdit-基于WPF的代码显示控件

    AvalonEdit是基于WPF的代码显示控件,项目地址:https://github.com/icsharpcode/AvalonEdit,支持C#,javascript,C++,XML,HTML, ...

  10. cygwin环境搭建

    可以在家目录下查看.bash_profile里的PATH.如果是:PATH=$PATH:$HOME/bin则需要添加成如下: PATH=$PATH:$HOME/bin:/sbin:/usr/bin:/ ...