Tensorflow 实战Google深度学习框架 第五章 5.2.1Minister数字识别 源代码
import os
import tab
import tensorflow as tf print "tensorflow 5.2 " from tensorflow.examples.tutorials.mnist import input_data '''
mnist = input_data.read_data_sets("/asky/tensorflow/mnist_data",one_hot=True)
print "-------------------------------------"
print "Training data size: ",mnist.train.num_examples
print "-------------------------------------"
print "Validating data size: ",mnist.validation.num_examples
print "-------------------------------------"
print "Testing data size: " ,mnist.test.num_examples
print "-------------------------------------"
print "Example training data: ",mnist.train.images[0]
print "-------------------------------------"
print "Example training data label: ",mnist.train.labels[0] batch_size = 100
xs,ys=mnist.train.next_batch(batch_size) print "X shape:",xs.shape print "Y shape:",ys.shape print "Test Tezt"
''' INPUT_NODE = 784
OUTPUT_NODE = 10 LAYER1_NODE = 500 BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99 REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor,avg_class,weights1,biases1,weights2,biases2):
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor,weights1)+biases1)
return tf.matmul(layer1,weights2)+biases2
else:
layer1 = tf.nn.relu(
tf.matmul(input_tensor,avg_class.average(weights1))+
avg_class.average(biases1))
return tf.matmul(layer1,avg_class.average(weights2))+avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32,[None,INPUT_NODE],name='x-input')
y_ = tf.placeholder(tf.float32,[None,OUTPUT_NODE],name='y-input')
weights1 = tf.Variable(
tf.truncated_normal([INPUT_NODE,LAYER1_NODE],stddev=0.1))
biases1 = tf.Variable( tf.constant(0.1,shape=[LAYER1_NODE])) weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE,OUTPUT_NODE],stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1,shape=[OUTPUT_NODE])) y = inference(x,None,weights1,biases1,weights2,biases2) global_step = tf.Variable(0,trainable=False) variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) average_y = inference(x,variable_averages,weights1,biases1,weights2,biases2) #cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(y, tf.argmax(y_, 1 ))
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y_, 1), logits=y) cross_entropy_mean = tf.reduce_mean(cross_entropy) regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) regularization = regularizer(weights1) + regularizer(weights2) loss = cross_entropy_mean + regularization learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples/BATCH_SIZE,
LEARNING_RATE_DECAY
) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step,variables_averages_op]):
train_op = tf.no_op(name='train') correct_prediction = tf.equal(tf.argmax(average_y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images,
y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels }
for i in range(TRAINING_STEPS):
if i % 1000 ==0:
validate_acc = sess.run(accuracy,feed_dict=validate_feed)
print ("After %d training step(s),validation accuracy "
"using average model is %g " %(i,validate_acc) )
xs, ys = mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x: xs , y_ : ys}) test_acc = sess.run(accuracy,feed_dict=test_feed)
print ( "After %d training step(s),test accuracy using average "
"model is %g " % (TRAINING_STEPS , test_acc) ) def main(argv=None) :
mnist = input_data.read_data_sets("/asky/tensorflow/mnist_data",one_hot=True)
train(mnist) if __name__ == '__main__':
tf.app.run()
Tensorflow 实战Google深度学习框架 第五章 5.2.1Minister数字识别 源代码的更多相关文章
- [Tensorflow实战Google深度学习框架]笔记4
本系列为Tensorflow实战Google深度学习框架知识笔记,仅为博主看书过程中觉得较为重要的知识点,简单摘要下来,内容较为零散,请见谅. 2017-11-06 [第五章] MNIST数字识别问题 ...
- 1 如何使用pb文件保存和恢复模型进行迁移学习(学习Tensorflow 实战google深度学习框架)
学习过程是Tensorflow 实战google深度学习框架一书的第六章的迁移学习环节. 具体见我提出的问题:https://www.tensorflowers.cn/t/5314 参考https:/ ...
- TensorFlow+实战Google深度学习框架学习笔记(5)----神经网络训练步骤
一.TensorFlow实战Google深度学习框架学习 1.步骤: 1.定义神经网络的结构和前向传播的输出结果. 2.定义损失函数以及选择反向传播优化的算法. 3.生成会话(session)并且在训 ...
- 学习《TensorFlow实战Google深度学习框架 (第2版) 》中文PDF和代码
TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用.<TensorFlow:实战Google深度学习框架(第2版)>为TensorFlow入门参考书,帮助快速. ...
- TensorFlow实战Google深度学习框架-人工智能教程-自学人工智能的第二天-深度学习
自学人工智能的第一天 "TensorFlow 是谷歌 2015 年开源的主流深度学习框架,目前已得到广泛应用.本书为 TensorFlow 入门参考书,旨在帮助读者以快速.有效的方式上手 T ...
- TensorFlow实战Google深度学习框架1-4章学习笔记
目录 第1章 深度学习简介 第2章 TensorFlow环境搭建 第3章 TensorFlow入门 第4章 深层神经网络 第1章 深度学习简介 对于许多机器学习问题来说,特征提取不是一件简单的事情 ...
- TensorFlow实战Google深度学习框架10-12章学习笔记
目录 第10章 TensorFlow高层封装 第11章 TensorBoard可视化 第12章 TensorFlow计算加速 第10章 TensorFlow高层封装 目前比较流行的TensorFlow ...
- TensorFlow实战Google深度学习框架5-7章学习笔记
目录 第5章 MNIST数字识别问题 第6章 图像识别与卷积神经网络 第7章 图像数据处理 第5章 MNIST数字识别问题 MNIST是一个非常有名的手写体数字识别数据集,在很多资料中,这个数据集都会 ...
- Tensorflow实战Google深度学习框架-总结-1
第一章:深度学习简介 1⃣️应用有 1.计算机视觉 2.语音识别 3.自然语言处理 4.人机博弈 2⃣️深度学习,机器学习,AI 的关系
随机推荐
- fatal error: malformed or corrupted AST file: 'Unable to load module Darwin.pcm 问题解决
xcode5 编译project.偶然碰到了以下的问题: fatal error: malformed or corrupted AST file: 'Unable to load module &q ...
- CentOS安装Emacs文本编辑器
我这里安装的是:emacs.24.2 下载地址:http://ftp.gnu.org/pub/gnu/emacs/emacs-24.2.tar.gz 下载文件:emacs-24.2.tar.gz 步骤 ...
- C# 使用IrisSkin2.dll皮肤库C# ssk皮肤
其实皮肤就是一个第三方的控件,名字是IrisSkin2.dll只要添加到你的工具箱里就可以和其它控件一样使用了下面我说一下使用的方法,不对的地方大家多指教啊. 一.添加控件IrisSkin2.dll. ...
- uniqid,md5,microtime
<?php header("content-type:text/html;charset=utf-8"); $str = uniqid(md5(microtime(true) ...
- OpenGL模板缓冲区与模板测试
原文地址:http://www.blogjava.net/qileilove/archive/2014/01/23/409269.html 帧缓冲区有许多缓冲区构成,这些缓冲区大致分为: 颜色缓冲区: ...
- js 离开页面
序言 大家是否经常遇到在关闭网页的时候,会看到一个确定是否离开当前页面的提示框?想一些在线测试系统.信息录入系统等就经常会有这一些提示,避免用户有意或者无意中关掉了页面,导致数据丢失.这里面的实现过程 ...
- Loadrunner C 编程_1
就目前的了解.Loadrunner的脚本语言其实和C没什么区别.他内部的好多机制都是C实现的. 不过是一种“类C” 所以我从几个方面分析 1:定义常量变量和C一样 2:在LR中,C的变量和LR的参数是 ...
- 【python】\\u的字符编码问题
Str = "\\u559c\\u6b22\\u4e00\\u4e2a\\u4eba";Str = Str.decode("unicode-escape")
- jQuery动态生成Bootstrap表格
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...
- ubuntu 执行make menuconfig ARCH=arm
1.ubuntu 执行make menuconfig ARCH=arm出错了!! *** Unable to find the ncurses libraries or the *** require ...