arc093F Dark Horse
我们可以假设1的位置在1,并且依次与右边的区间合并。答案最后乘上2^n即可。
那么需要考虑1所在的区间与另一个区间合并时,另一个区间的最小值不能为特殊的。
直接求解很难,考虑容斥,钦定在哪几个位置必定输,容斥出必胜的方案数。
从大到小dp,设f(i,S)表示当前考虑到第i个特殊的数,必输的区间集合为S。
考虑是否向集合S中加入i,若加入,枚举在哪个区间合并,用组合数算出能够选出的数的方案并乘上排列数。
若不加入,则直接转移即可。
f(i,S) <- f(i+1,S)
f(i,S|(1<<k)) <- Σ f(i+1,S) * C((1<<n)-S-a[i],(1<<k)-1) * (1<<k)!
最后f(i,S)对答案的贡献还要乘上没有钦定的位置数的排列。
最后答案乘上2^n。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=17,mod=1e9+7;
int n,m,a[N],f[N][1<<N],fac[1<<N],ifac[1<<N];
int Pow(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(ll)ret*x%mod;
k>>=1;x=(ll)x*x%mod;
}
return ret;
}
int C(int n,int m){
if(n<m)return 0;
return (ll)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)scanf("%d",&a[i]);
fac[0]=1;
for(int i=1;i<=(1<<n);i++)fac[i]=(ll)fac[i-1]*i%mod;
for(int i=0;i<=(1<<n);i++)ifac[i]=Pow(fac[i],mod-2);
sort(a+1,a+m+1,greater<int>());
f[0][0]=1;
for(int i=0;i<m;i++)
for(int j=0;j<(1<<n);j++){
if(!f[i][j])continue;
f[i+1][j]=(f[i+1][j]+f[i][j])%mod;
int res=(1<<n)-j-a[i+1];
for(int k=0;k<n;k++){
if(j&(1<<k))continue;
if(res<(1<<k)-1)break;
f[i+1][j|(1<<k)]=(f[i+1][j|(1<<k)]-(ll)f[i][j]*C(res,(1<<k)-1)%mod*fac[1<<k])%mod;
}
}
int ans=0;
for(int i=0;i<(1<<n);i++){
ans=(ans+(ll)f[m][i]*fac[(1<<n)-1-i])%mod;
}
ans=((ll)ans*(1<<n)%mod+mod)%mod;
cout<<ans<<"\n";
}
arc093F Dark Horse的更多相关文章
- [AtCoder ARC093F]Dark Horse
题目大意:有$2^n$个人,每相邻的两个人比赛一次.令两个人的编号为$a,b(a\leqslant b)$,若$a\neq 1$,则$a$的人获胜:否则若$b\in S$则$b$获胜,不然$1$获胜. ...
- ARC093F Dark Horse 【容斥,状压dp】
题目链接:gfoj 神仙计数题. 可以转化为求\(p_1,p_2,\ldots,p_{2^n}\),使得\(b_i=\min\limits_{j=2^i+1}^{2^{i+1}}p_j\)都不属于\( ...
- ARC093F Dark Horse 容斥原理+DP
题目传送门 https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 由于不论 \(1\) 在哪个位置,一轮轮下来,基本上过程都是相似的,所以不妨假设 ...
- 【arc093f】Dark Horse(容斥原理,动态规划,状态压缩)
[arc093f]Dark Horse(容斥原理,动态规划,状态压缩) 题面 atcoder 有 \(2^n\) 名选手,编号为 \(1\) 至 \(2^n\) .现在这 \(2^n\) 名选手将进行 ...
- ARC 093 F Dark Horse 容斥 状压dp 组合计数
LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任 ...
- ARC093 F - Dark Horse
https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 先钦定\(1\)号站在第一个位置上,那么他第一轮要和\((2)\)打,第二轮要和\((3,4) ...
- ARC093 F Dark Horse——容斥
题目:https://atcoder.jp/contests/arc093/tasks/arc093_d #include<cstdio> #include<cstring> ...
- Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)
Atcoder 题面传送门 & 洛谷题面传送门 常规题,简单写写罢((( 首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \ ...
- 五道java小题,补更四道java小题
一:分析以下需求,并用代码实现 1.定义List集合,存入多个字符串 2.删除集合中字符串"def" 3.然后利用迭代器遍历集合元素并输出 import j ...
随机推荐
- shell命令跟踪
Linux Shell提供了两种方式来跟踪Shell脚本中的命令,以帮助我们准确的定位程序中存在的问题.下面的代码为第一种方式,该方式会将Shell脚本中所有被执行的命令打印到终端,并在命令前加&qu ...
- html之内容解析
首先我们知道了HTML和css用途,那么今天就来看看HTML的一部分功能和用途. 简单的说HTML就是灵活使用标签,标签就相当于一个网页的骨架,有了这个骨架才能使网页更能区域色彩化. 首先来说HTML ...
- GridFS使用及配合nginx实现文件服务
Mongodb下GridFS使用及配合nginx实现文件服务 一.GridFS简介 GridFS是mongodb下用来存储文件的一种规范,所有官方支持的驱动均实现了GridFS规范. Mongodb本 ...
- 【转】 面向对象(OO)程序设计
前言 本文主要介绍面向对象(OO)程序设计,以维基百科的解释: 面向对象程序设计(英语:Object-oriented programming,缩写:OOP),指一种程序设计范型,同时也是一种程序开发 ...
- 提交表单时,post方式无法提交(一种情况)
tomcat6,设置文件上传不限制大小maxPostSize="0" 但是在tomcat7及以后版本,应设置为小于0,如maxPostSize="-1" 否则 ...
- 阿里云服务器windows server流量不大的情况下,tomcat经常出现访问阻塞,手动ctrl+c或者点击右键又访问正常
我被这个问题折磨了好几天,因为这两天要帮别人做推广,不能再出现这样的情况了,不然广告费就白烧了,所以特意查了一下资料,结果解决方案被我找出来了. 问题发生原因是因为打开编辑选项后,一不小心点到dos窗 ...
- org.apache.commons.lang.StringUtils
org.apache.commons.lang.StringUtils 作为jdk中lang包的补充 检查CharSequence是否为空,null或者空格 CharSequence (CharBuf ...
- 撩课-Java每天10道面试题第4天
撩课Java+系统架构 视频 点击开始学习 31.静态变量和实例变量的区别? 静态变量也叫类变量, 这种变量前加了static修饰符. 可以直接用类名调用, 也可以用对象调用, 而且所有对象的同一个类 ...
- Web安全相关(四):过多发布(Over Posting)
简介 过多发布的内容相对比较简单,因此,我只打算把原文中的一些关键信息翻译一下.原文链接如下: http://www.asp.net/mvc/overview/getting-started/gett ...
- 洛谷P5057 [CQOI2006]简单题(线段树)
题意 题目链接 Sol 紫色的线段树板子题??... #include<iostream> #include<cstdio> #include<cmath> usi ...