Uva 12436 Rip Van Winkle's Code
Rip Van Winkle was fed up with everything except programming. One day he found a problem whichrequired to perform three types of update operations (A, B, C), and one query operation S over an arraydata[]. Initially all elements of data are equal to 0. Though
Rip Van Winkle is going to sleep for 20years, and his code is also super slow, you need to perform the same update operations and output theresult for the query operation S in an efficient way.
long long data[250001];
void A( int st, int nd ) {
for( int i = st; i \le nd; i++ ) data[i] = data[i] + (i - st + 1);
}
void B( int st, int nd ) {
for( int i = st; i \le nd; i++ ) data[i] = data[i] + (nd - i + 1);
}
void C( int st, int nd, int x ) {
for( int i = st; i \le nd; i++ ) data[i] = x;
}
long long S( int st, int nd ) {
long long res = 0;
for( int i = st; i \le nd; i++ ) res += data[i];
return res;
}
Input
The first line of input will contain T (≤ 4 ∗ 105) denoting the number of operations. Each of the nextT lines starts with a character (‘A’, ‘B’, ‘C’ or ‘S’), which indicates the type of operation. Character ‘A’,‘B’ or ‘S’ will be followed by two integers,
st and nd in the same line. Character ‘C’ is followed by threeintegers, st, nd and x. It’s assumed that, 1 ≤ st ≤ nd ≤ 250000 and −105 ≤ x ≤ 105. The meaningsof these integers are explained by the code of Rip Van Winkle.
Output
For each line starting with the character ‘S’, print S(st, nd) as defined in the code.
Sample Input
7
A 1 4
B 2 3
S 1 3
C 3 4 -2
S 2 4
B 1 3
S 2 4
Sample Output
9
0
3
这题是区间更新,这题比較麻烦,做了非常长时间。先用线段树维护l,r,add1(线段左端点加的值),add2(线段右端点加的值),step(区间的公差,右边减去左边的),sum(区间总和),flag(推断区间是否数字同样),value(区间数字都同样时的数值大小).我的思路是每一次更新,都把这一段的sum值直接表示出来。假设更新的这条线段小于当前线段,那么先不更新sum值。而是b[th].sum=b[lth].sum+b[rth].sum;
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define lth th<<1
#define rth th<<1|1
#define inf 99999999
#define pi acos(-1.0)
#define MOD 100000007
#define maxn 250050
struct node{
int l,r;
ll value,flag; //flag表示这段是不是值都是同样的,value是这段的值
ll add1,step,add2; //add1表示左端点加的值,add2表示右端点,step表示这段的公差
ll sum;
}b[4*maxn]; void build(int l,int r,int th)
{
int mid;
b[th].l=l;b[th].r=r;
b[th].value=0;b[th].flag=1;
b[th].add1=b[th].step=b[th].add2=0;
b[th].sum=0;
if(l==r)return;
mid=(l+r)/2;
build(l,mid,lth);
build(mid+1,r,rth);
}
void pushdown(int th)
{
int mid;
mid=(b[th].l+b[th].r)/2;
if(b[th].flag){
b[th].flag=0;
b[lth].flag=1;
b[lth].value=b[th].value;
b[lth].add1=b[lth].add2=b[lth].step=0;
b[lth].sum=(b[lth].r-b[lth].l+1)*b[th].value; b[rth].flag=1;
b[rth].value=b[th].value;
b[rth].add1=b[rth].add2=b[rth].step=0;
b[rth].sum=(b[rth].r-b[rth].l+1)*b[th].value;
} ll add1,add2;
add1=b[th].add1; add2=b[th].add1+(mid-b[th].l)*b[th].step;
b[lth].add1+=add1;
b[lth].add2+=add2;
b[lth].step+=b[th].step;
b[lth].sum+=(add1+add2)*(b[lth].r-b[lth].l+1)/2; ll add3,add4;
add3=add2+b[th].step;add4=add3+(b[th].r-(mid+1))*b[th].step;
b[rth].add1+=add3;
b[rth].add2+=add4;
b[rth].step+=b[th].step;
b[rth].sum+=(add3+add4)*(b[rth].r-b[rth].l+1)/2; b[th].add1=b[th].add2=b[th].step=0;
}
void pushup(int th)
{
b[th].sum=b[lth].sum+b[rth].sum;
} void update(int l,int r,ll add,int f,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
if(f==1){
b[th].add1+=add;
b[th].add2+=add+b[th].r-b[th].l;
b[th].step+=1;
b[th].sum+=(add+add+b[th].r-b[th].l)*(b[th].r-b[th].l+1)/2;
return;
}
else if(f==2){
b[th].add1+=add+b[th].r-b[th].l;
b[th].add2+=add;
b[th].step-=1;
b[th].sum+=(add+add+b[th].r-b[th].l)*(b[th].r-b[th].l+1)/2;
return;
}
else if(f==3){
b[th].flag=1;
b[th].value=add;
b[th].sum=b[th].value*(b[th].r-b[th].l+1);
b[th].add1=b[th].add2=b[th].step=0;
return;
}
}
pushdown(th);
mid=(b[th].l+b[th].r)/2;
if(r<=mid)update(l,r,add,f,lth);
else if(l>mid)update(l,r,add,f,rth);
else{
if(f==1){
update(l,mid,add,f,lth);
update(mid+1,r,add+(mid+1-l),f,rth);
}
else if(f==2){
update(l,mid,add+(r-mid),f,lth);
update(mid+1,r,add,f,rth);
}
else if(f==3){
update(l,mid,add,f,lth);
update(mid+1,r,add,f,rth);
}
}
pushup(th);
}
ll question(int l,int r,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
return b[th].sum;
}
pushdown(th);
mid=(b[th].l+b[th].r)/2;
if(r<=mid)return question(l,r,lth);
else if(l>mid)return question(l,r,rth);
else{
return question(l,mid,lth)+question(mid+1,r,rth);
}
}
int main()
{
int m,i,j,T,c,d;
ll n,num;
char s[10];
while(scanf("%lld",&n)!=EOF)
{
build(1,250010,1);
for(i=1;i<=n;i++){
scanf("%s%d%d",s,&c,&d);
if(s[0]=='A'){
update(c,d,1,1,1);
}
else if(s[0]=='B'){
update(c,d,1,2,1);
}
else if(s[0]=='C'){
scanf("%lld",&num);
update(c,d,num,3,1);
}
else if(s[0]=='S'){
printf("%lld\n",question(c,d,1) );
}
}
}
return 0;
}
Uva 12436 Rip Van Winkle's Code的更多相关文章
- UVA 12436 - Rip Van Winkle's Code(线段树)
UVA 12436 - Rip Van Winkle's Code option=com_onlinejudge&Itemid=8&page=show_problem&cate ...
- Uva 12436 Rip Van Winkle's Code
Rip Van Winkle was fed up with everything except programming. One day he found a problem whichrequir ...
- UVA-12436 Rip Van Winkle's Code (线段树区间更新)
题目大意:一个数组,四种操作: long long data[250001]; void A( int st, int nd ) { for( int i = st; i <= nd; i++ ...
- UVA 12436-Rip Van Winkle's Code(线段树的区间更新)
题意: long long data[250001]; void A( int st, int nd ) { for( int i = st; i \le nd; i++ ) data[i] = da ...
- UVA - 10057 A mid-summer night's dream.
偶数时,中位数之间的数都是能够的(包含中位数) 奇数时,一定是中位数 推导请找初中老师 #include<iostream> #include<cstdio> #include ...
- 常见条码类型介绍(Code 39、Code 128、EAN-8、EAN-13、EAN-128、ISSN、TIF、TIF-14、UPC(A)、UPC(E))
常见条码类型,如下: 1.Code 39 Code 39,又称为"Code 3 of 9",是非零售市场中最常用的格式,用于盘存和跟踪.Code 39码编码规则简单,误码率低.所能 ...
- 退役笔记一#MySQL = lambda sql : sql + ' Source Code 4 Explain Plan '
Mysql 查询运行过程 大致分为4个阶段吧: 语法分析(sql_parse.cc<词法分析, 语法分析, 语义检查 >) >>sql_resolver.cc # JOIN.p ...
- UVa 1593 (水题 STL) Alignment of Code
话说STL的I/O流用的还真不多,就着这道题熟练一下. 用了两个新函数: cout << std::setw(width[j]); 这个是设置输出宽度的,但是默认是在右侧补充空格 所 ...
- UVA 1484 - Alice and Bob's Trip(树形DP)
题目链接:1484 - Alice and Bob's Trip 题意:BOB和ALICE这对狗男女在一颗树上走,BOB先走,BOB要尽量使得总路径权和大,ALICE要小,可是有个条件,就是路径权值总 ...
随机推荐
- struts2中struts.xml配置文件详解
struts.xml的常用配置 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE struts ...
- Dapper-继续
好久没有来博客园了,最近刚好有点时间晚上,继续完善之前的orm orm自己用的比较多的还是EF,linq写着真的是很方便,但是EF最让人头疼的地方还是每个表都需要建立mapping. 这个是相当的烦恼 ...
- Node.js初探之POST方式传输
小知识:POST比GET传输的数据量大很多 POST发数据--"分段" 实例: 准备一个form.html文件: <!DOCTYPE html> <html> ...
- CMSIS_RTOS_Tutorial自译中文版
一.序言 本资料是Trevor Martin编写的<The Designers Guide to the Cortex-M Processor Family>的摘要,并得到Elsevier ...
- CLR之委托的揭秘(二)
杂谈 在开始真正的代码之前,分析一下上周的一些工作内容,发现自己在代码上还是有很多小毛病需要纠正和去更改的,首先之前一直疏于文档的整理,几乎很少去写文档,第二对于接口开发过程中缺少一定的严谨性,很多问 ...
- 原生JS—实现图片循环切换及监测鼠标滚动切换图片
今天我们主要讲讲如何使用原生JS实现图片的循环切换的方法以及如何检测鼠标滚动循环切换图片.多余的话我们就不多说了,我们一个一个开始讲吧. 1 原生JS实现图片循环切换 -- 方法一 在上栗子之前我们 ...
- Git提交到github上
1.本地创建一个目录redis [guosong@etch171 mars171 redis]# pwd /data1/guosong/code/redis [guosong@etch171 mars ...
- NULL字段对于UNIQUE INDEX失效
- [C#]使用dnSpy对目标程序(EXE或DLL)进行反编译修改并编译运行
本文为原创文章.源代码为原创代码,如转载/复制,请在网页/代码处明显位置标明原文名称.作者及网址,谢谢! 本文使用的工具下载地址为: https://github.com/cnxy/dnSpy/arc ...
- db2中left()函数和right()函数对应oracle中的substr()函数
DB2 LEFT.RIGHT函数 语法:LEFT(ARG,LENGTH).RIGHT(ARG,LENGTH) LEFT.RIGHT函数返回ARG最左边.右边的LENGTH个字符串,ARG可以是CHA ...