二分图匹配是很常见的算法问题,一般用匈牙利算法解决二分图最大匹配问题,但是目前网上绝大多数都是C/C++实现版本,没有python版本,于是就用python实现了一下深度优先的匈牙利算法,本文使用的是递归的方式以便于理解,然而迭代的方式会更好,各位可以自行实现。

1、二分图、最大匹配

什么是二分图:二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。

什么是匹配:把上图想象成3位工人和4种工作,连线代表工人愿意从事某项工作,但最终1个工人只能做一种工作,最终的配对结果连线就是一个匹配。匹配可以是空。 
什么是最大匹配:在愿意从事的基础上,能够最多配成几对。

现在要用匈牙利算法找出最多能发展几对。 
[color=green][size=medium] 
匈牙利算法是解决寻找二分图最大匹配的。

更多二分图最大匹配的图解可以参考 http://xuxueliang.blog.51cto.com/5576502/1297344

以下是代码,为了图省事使用了类,实际上并不需要这样

M=[]
class DFS_hungary(): def __init__(self, nx, ny, edge, cx, cy, visited):
self.nx, self.ny=nx, ny
self.edge = edge
self.cx, self.cy=cx,cy
self.visited=visited def max_match(self):
res=0
for i in self.nx:
if self.cx[i]==-1:
for key in self.ny: # 将visited置0表示未访问过
self.visited[key]=0
res+=self.path(i)return res def path(self, u):
for v in self.ny:
if self.edge[u][v] and (not self.visited[v]):
self.visited[v]=1
if self.cy[v]==-1:
self.cx[u] = v
self.cy[v] = u
M.append((u,v))
return 1
else:
M.remove((self.cy[v], v))
if self.path(self.cy[v]):
self.cx[u] = v
self.cy[v] = u
M.append((u, v))
return 1
return 0

ok,接着测试一下:

if __name__ == '__main__':
nx, ny = ['A', 'B', 'C', 'D'], ['E', 'F', 'G', 'H']
edge = {'A':{'E': 1, 'F': 0, 'G': 1, 'H':0}, 'B':{'E': 0, 'F': 1, 'G': 0, 'H':1}, 'C':{'E': 1, 'F': 0, 'G': 0, 'H':1}, 'D':{'E': 0, 'F': 0, 'G': 1, 'H':0}} # 1 表示可以匹配, 0 表示不能匹配
cx, cy = {'A':-1,'B':-1,'C':-1,'D':-1}, {'E':-1,'F':-1,'G':-1,'H':-1}
visited = {'E': 0, 'F': 0, 'G': 0,'H':0} print DFS_hungary(nx, ny, edge, cx, cy, visited).max_match()

结果为4,是正确的。各位也可以使用其它二分图来测试。

---------------------------------------------------------补充BFS版本匈牙利算法-------------------------------------------------------

  BFS版本的匈牙利算法性能更好一些,但是比较难理解,下面把BFS版本的算法也贴出来,也是翻译自c++版本,这次使用更好的迭代方式替换了递归方式

def BFS_hungary(g,Nx,Ny,Mx,My,chk,Q,prev):
res=0
for i in xrange(Nx):
if Mx[i]==-1:
qs=qe=0
Q[qe]=i
qe+=1
prev[i]=-1 flag=0
while(qs<qe and not flag):
u=Q[qs]
for v in xrange(Ny):
if flag:continue
if g[u][v] and chk[v]!=i:
chk[v]=i
Q[qe]=My[v]
qe+=1
if My[v]>=0:
prev[My[v]]=u
else:
flag=1
d,e=u,v
while d!=-1:
t=Mx[d]
Mx[d]=e
My[e]=d
d=prev[d]
e=t
qs+=1
if Mx[i]!=-1:
res+=1
return res

测试一下:

if __name__ == '__main__':
g=[[1,0,1,0],[0,1,0,1],[1,0,0,1],[0,0,1,0]]
Nx=4
Ny=4
Mx=[-1,-1,-1,-1]
My=[-1,-1,-1,-1]
chk=[-1,-1,-1,-1]
Q=[0 for i in range(100)]
    prev=[0,0,0,0]
print BFS_hungary()

结果为4,正确

二分图最大匹配:匈牙利算法的python实现的更多相关文章

  1. UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法

    二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...

  2. Ural1109_Conference(二分图最大匹配/匈牙利算法/网络最大流)

    解题报告 二分图第一题. 题目描写叙述: 为了參加即将召开的会议,A国派出M位代表,B国派出N位代表,(N,M<=1000) 会议召开前,选出K队代表,每对代表必须一个是A国的,一个是B国的; ...

  3. HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...

  4. HDU1068 (二分图最大匹配匈牙利算法)

    Girls and Boys Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. poj - 3041 Asteroids (二分图最大匹配+匈牙利算法)

    http://poj.org/problem?id=3041 在n*n的网格中有K颗小行星,小行星i的位置是(Ri,Ci),现在有一个强有力的武器能够用一发光速将一整行或一整列的小行星轰为灰烬,想要利 ...

  6. 二分图最大匹配(匈牙利算法) POJ 3041 Asteroids

    题目传送门 /* 题意:每次能消灭一行或一列的障碍物,要求最少的次数. 匈牙利算法:把行和列看做两个集合,当有障碍物连接时连一条边,问题转换为最小点覆盖数==二分图最大匹配数 趣味入门:http:// ...

  7. HDU - 1045 Fire Net (二分图最大匹配-匈牙利算法)

    (点击此处查看原题) 匈牙利算法简介 个人认为这个算法是一种贪心+暴力的算法,对于二分图的两部X和Y,记x为X部一点,y为Y部一点,我们枚举X的每个点x,如果Y部存在匹配的点y并且y没有被其他的x匹配 ...

  8. 51Nod 2006 飞行员配对(二分图最大匹配)-匈牙利算法

    2006 飞行员配对(二分图最大匹配) 题目来源: 网络流24题 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 第二次世界大战时期,英国皇家空军从沦陷国 ...

  9. poj 3894 System Engineer (二分图最大匹配--匈牙利算法)

    System Engineer Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 507   Accepted: 217 Des ...

  10. POJ1274:The Perfect Stall(二分图最大匹配 匈牙利算法)

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17895   Accepted: 814 ...

随机推荐

  1. Less 的使用

    Less 的使用 开发时直接使用 引用你的样式文件(main.less) (必须在less.min.js) 前引用 引用less.min.js 文件 <link href="resou ...

  2. tp框架为什么验证码加载不出来?----- ob_clean() 可解决

    在用tp做验证码时,代码逻辑都正确,但就是加载不出图片来,如何解决呢?在创建验证码之前加上 ob_clean(); public function haha(){ ob_clean(); $v = n ...

  3. 第二章:2.8 通过Django 在web页面上面输出 “Hello word ”

    1. 第一步:配置 guest 目录下面的 settings.py 文件, 将 sign应用添加到 guest项目中. 2. 在 guest目录下面,打开 urls.py 文件,添加 要打开的路由文件 ...

  4. java中变量赋值的理解

    1.当赋值的值超出声明变量的范围时候,会报错! byte a =200 //会报错,因超出范围. byte a =(byte)200;//进行一个强制转换,就不会报错,不过会超出范围,超出部分会从头开 ...

  5. 微信小程序简述

    最近在公司实习,经理要求做一个微信小程序,晚上闲时来写一下. 微信小程序问世没多久,但毋庸置疑的是在不久的将来,它可以替代掉很多的APP.个人认为它的优势在于占用资源少,可以做到即用即走,对于一些使用 ...

  6. windows下安装DB2数据库以及使用Aqua Data Studio链接数据库

    本文只是作为自己的心得体会,不具有一般性! 1.其实安装DB2数据库还是比较简单的,一般都是直接下一步下一步就可以了,只是有些地方需要注意.我安装的DB2数据库版本如下图所示: 2.拿到数据库的版本之 ...

  7. Java设计模式之包装模式

    有时候一个对象的方法可能不是我们想要的功能,我们希望能将这个方法覆写.而对于覆写,我们最直白的感觉就是通过子类继承的方式,但是有时候对于使用web开发而言,我们能知道获取对象的实现接口,而真正对象是属 ...

  8. c++动态内存管理

    一.内存的简要了解 说到内存,很多人应该都多多少少有点了解了,我们在这再稍微多说几句: 一般我们可以把内存理解为三个部分:静态区,栈,堆.有些朋友搞不清到底什么是栈什么是堆,堆栈有多人会认为是堆和栈, ...

  9. SVN常见问题

    one or more files are in a conflicted state.(一个或多个文件处于矛盾状态)意思是这个文件已经被其他人修改过了. 然后我点击ok按钮后,找到冲突的文件再次up ...

  10. hdu_3336: Count the string(KMP dp)

    题目链接 题意:求给定字符串中,可以与某一前缀相同的所有子串的数量 做这道题需要明白KMP算法里next[]数组的意义 首先用一数组nex[](这里与之前博客中提到的next明显不同)存储前缀后缀最长 ...