二分图最大匹配:匈牙利算法的python实现
二分图匹配是很常见的算法问题,一般用匈牙利算法解决二分图最大匹配问题,但是目前网上绝大多数都是C/C++实现版本,没有python版本,于是就用python实现了一下深度优先的匈牙利算法,本文使用的是递归的方式以便于理解,然而迭代的方式会更好,各位可以自行实现。
1、二分图、最大匹配
什么是二分图:二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。

什么是匹配:把上图想象成3位工人和4种工作,连线代表工人愿意从事某项工作,但最终1个工人只能做一种工作,最终的配对结果连线就是一个匹配。匹配可以是空。
什么是最大匹配:在愿意从事的基础上,能够最多配成几对。
现在要用匈牙利算法找出最多能发展几对。
[color=green][size=medium]
匈牙利算法是解决寻找二分图最大匹配的。
更多二分图最大匹配的图解可以参考 http://xuxueliang.blog.51cto.com/5576502/1297344
以下是代码,为了图省事使用了类,实际上并不需要这样
M=[]
class DFS_hungary(): def __init__(self, nx, ny, edge, cx, cy, visited):
self.nx, self.ny=nx, ny
self.edge = edge
self.cx, self.cy=cx,cy
self.visited=visited def max_match(self):
res=0
for i in self.nx:
if self.cx[i]==-1:
for key in self.ny: # 将visited置0表示未访问过
self.visited[key]=0
res+=self.path(i)return res def path(self, u):
for v in self.ny:
if self.edge[u][v] and (not self.visited[v]):
self.visited[v]=1
if self.cy[v]==-1:
self.cx[u] = v
self.cy[v] = u
M.append((u,v))
return 1
else:
M.remove((self.cy[v], v))
if self.path(self.cy[v]):
self.cx[u] = v
self.cy[v] = u
M.append((u, v))
return 1
return 0
ok,接着测试一下:
if __name__ == '__main__':
nx, ny = ['A', 'B', 'C', 'D'], ['E', 'F', 'G', 'H']
edge = {'A':{'E': 1, 'F': 0, 'G': 1, 'H':0}, 'B':{'E': 0, 'F': 1, 'G': 0, 'H':1}, 'C':{'E': 1, 'F': 0, 'G': 0, 'H':1}, 'D':{'E': 0, 'F': 0, 'G': 1, 'H':0}} # 1 表示可以匹配, 0 表示不能匹配
cx, cy = {'A':-1,'B':-1,'C':-1,'D':-1}, {'E':-1,'F':-1,'G':-1,'H':-1}
visited = {'E': 0, 'F': 0, 'G': 0,'H':0} print DFS_hungary(nx, ny, edge, cx, cy, visited).max_match()
结果为4,是正确的。各位也可以使用其它二分图来测试。
---------------------------------------------------------补充BFS版本匈牙利算法-------------------------------------------------------
BFS版本的匈牙利算法性能更好一些,但是比较难理解,下面把BFS版本的算法也贴出来,也是翻译自c++版本,这次使用更好的迭代方式替换了递归方式
def BFS_hungary(g,Nx,Ny,Mx,My,chk,Q,prev):
res=0
for i in xrange(Nx):
if Mx[i]==-1:
qs=qe=0
Q[qe]=i
qe+=1
prev[i]=-1 flag=0
while(qs<qe and not flag):
u=Q[qs]
for v in xrange(Ny):
if flag:continue
if g[u][v] and chk[v]!=i:
chk[v]=i
Q[qe]=My[v]
qe+=1
if My[v]>=0:
prev[My[v]]=u
else:
flag=1
d,e=u,v
while d!=-1:
t=Mx[d]
Mx[d]=e
My[e]=d
d=prev[d]
e=t
qs+=1
if Mx[i]!=-1:
res+=1
return res
测试一下:
if __name__ == '__main__':
g=[[1,0,1,0],[0,1,0,1],[1,0,0,1],[0,0,1,0]]
Nx=4
Ny=4
Mx=[-1,-1,-1,-1]
My=[-1,-1,-1,-1]
chk=[-1,-1,-1,-1]
Q=[0 for i in range(100)]
prev=[0,0,0,0]
print BFS_hungary()
结果为4,正确
二分图最大匹配:匈牙利算法的python实现的更多相关文章
- UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法
二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...
- Ural1109_Conference(二分图最大匹配/匈牙利算法/网络最大流)
解题报告 二分图第一题. 题目描写叙述: 为了參加即将召开的会议,A国派出M位代表,B国派出N位代表,(N,M<=1000) 会议召开前,选出K队代表,每对代表必须一个是A国的,一个是B国的; ...
- HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...
- HDU1068 (二分图最大匹配匈牙利算法)
Girls and Boys Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- poj - 3041 Asteroids (二分图最大匹配+匈牙利算法)
http://poj.org/problem?id=3041 在n*n的网格中有K颗小行星,小行星i的位置是(Ri,Ci),现在有一个强有力的武器能够用一发光速将一整行或一整列的小行星轰为灰烬,想要利 ...
- 二分图最大匹配(匈牙利算法) POJ 3041 Asteroids
题目传送门 /* 题意:每次能消灭一行或一列的障碍物,要求最少的次数. 匈牙利算法:把行和列看做两个集合,当有障碍物连接时连一条边,问题转换为最小点覆盖数==二分图最大匹配数 趣味入门:http:// ...
- HDU - 1045 Fire Net (二分图最大匹配-匈牙利算法)
(点击此处查看原题) 匈牙利算法简介 个人认为这个算法是一种贪心+暴力的算法,对于二分图的两部X和Y,记x为X部一点,y为Y部一点,我们枚举X的每个点x,如果Y部存在匹配的点y并且y没有被其他的x匹配 ...
- 51Nod 2006 飞行员配对(二分图最大匹配)-匈牙利算法
2006 飞行员配对(二分图最大匹配) 题目来源: 网络流24题 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 第二次世界大战时期,英国皇家空军从沦陷国 ...
- poj 3894 System Engineer (二分图最大匹配--匈牙利算法)
System Engineer Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 507 Accepted: 217 Des ...
- POJ1274:The Perfect Stall(二分图最大匹配 匈牙利算法)
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17895 Accepted: 814 ...
随机推荐
- 2.如何使用matlab拟合曲线
输入数据 做数据曲线拟合,当然该有数据,本经验从以如下数据作为案例. 添加数据到curve fitting程序 这一步就是将你要拟合的数据添加到curve fitting程序中,同时给你拟合的曲线 ...
- 开源 .net license tool, EasyLicense !
介绍: 过去我常常像是否有一个帮助授权的软件,它可以非常简单的创建license,并且非常容易的验证license. 这是一个非常普通和公共的功能,但是我没有找到合适的开源软件,大部分开源软件都比较复 ...
- 在vs2010中显示代码的行数
1.打开VS2010,然后"工具" → "选项" 2.在选项页面,点击"文本编辑器"→"所有语言",在显示里将[行号]选 ...
- Spring源码:IOC原理解析(一)
版权声明:本文为博主原创文章,转载请注明出处,欢迎交流学习! IOC(Inversion of Control),即控制反转,意思是将对象的创建和依赖关系交给第三方容器处理,我们要用的时候告诉容器我们 ...
- 基于 svn 服务器及 cocoapods-repo-svn 插件进行组件化私有库的创建
一.准备 组件化 随着业务需求的增长,在单工程 MVC 模式下,app 代码逐渐变得庞大,面对的高耦合的代码和复杂的功能模块,我们或许就需要进行重构了,以组件化的形式,将需要的组件以 pod 私有库的 ...
- (cljs/run-at (JSVM. :all) "细说函数")
前言 作为一门函数式编程语言,深入了解函数的定义和使用自然是十分重要的事情,下面我们一起来学习吧! 3种基础定义方法 defn 定义语法 (defn name [params*] exprs*) 示 ...
- C# Lambda表达式运用
原文作者: C# Lambda表达式 原文作者2: Lambda表达式详解 Lambda表达式 "Lambda表达式"是一个匿名函数,是一种高效的类似于函数式编程的表达式,Lamb ...
- JAVA中Socket的用法模拟服务端和客户端
<看透springMvc源代码分析与实践>学习笔记 Socket分为ServerSocket和Socket两个大类 ServerSocket用于服务端,可以通过accept方法监听请求,监 ...
- codeforces 129B students and shoes
https://vjudge.net/problem/CodeForces-129B 题意: 有n个学生,他们之间被鞋带缠住了.现在,老师首先把所有只与一个学生直接相连的学生找出来,让他们聚集到一起, ...
- php工作两年了。。。
对于一个快要毕业的人来说,我相信大部分人都是迷茫的,我也一样但是迷茫的一塌糊涂完全不知道以后自己能干什么. 2014年底,某某培训机构来到学校进行招生.反正在对方的一阵忽悠之下我是蠢蠢欲动,但是当时的 ...