MLE :最大似然估计,求得的这套参数估计能够通过指定模型以最大概率在线样本观测数据

必须来自随机样本,自变量与因变量之间是线性关系

logistic 回归没有关于自变量分布的假设条件,自变量可以连续,也可以离散,不需要假设他们之间服从多元正太分布,当然如果服从,效果更好

logistic 回归对多元共线性敏感,自变量之间存在多元共线性会导致标准误差的膨胀              ????

最大似然的性质:

一致性,渐进有效性,渐进正态性

一致性表示当样本规模增大时,模型参数向真值收敛,变得无偏

渐进有效性表示规模很大时参数估计的标准误 standard error 相应缩小

渐进正态性表示规模很大的时候,参数估计值的分布趋近正态分布,我们可以进行假设的显著性检验与计算参数的置信区间

样本数小于100时最大似然风向较大,大于500就比较充分了

6.1.1 筛选自变量

对每个变量独立进行显著性检验,对于连续的变量,我们用单变量的logistic回归进行显著性检验。对于离散的,进行二维表分析。  这个显著性的值一般是0.25

6.1.2 模型比较

嵌套,模型用L.R.检验,不嵌套的模型使用信息测度指标,见3.1.4节

6.1.3

逐步比较得到最后的我们期望需要的变量

7.数据结构的不合理情况的解决方案

过离散,空单元,完全分离,多元共线性

Logistic 回归模型 第一遍阅读笔记的更多相关文章

  1. 机器学习笔记(四)Logistic回归模型实现

     一.Logistic回归实现 (一)特征值较少的情况 1. 实验数据 吴恩达<机器学习>第二课时作业提供数据1.判断一个学生能否被一个大学录取,给出的数据集为学生两门课的成绩和是否被录取 ...

  2. 机器学习笔记(三)Logistic回归模型

    Logistic回归模型 1. 模型简介: 线性回归往往并不能很好地解决分类问题,所以我们引出Logistic回归算法,算法的输出值或者说预测值一直介于0和1,虽然算法的名字有“回归”二字,但实际上L ...

  3. 如何在R语言中使用Logistic回归模型

    在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或 ...

  4. Softmax回归——logistic回归模型在多分类问题上的推广

    Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softma ...

  5. SPSS数据分析—配对Logistic回归模型

    Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配 ...

  6. SPSS数据分析—多分类Logistic回归模型

    前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型. 多分类Logistic回归模型又分为有序多分类Logi ...

  7. SPSS数据分析—二分类Logistic回归模型

    对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能 ...

  8. logistic回归模型

    一.模型简介 线性回归默认因变量为连续变量,而实际分析中,有时候会遇到因变量为分类变量的情况,例如阴性阳性.性别.血型等.此时如果还使用前面介绍的线性回归模型进行拟合的话,会出现问题,以二分类变量为例 ...

  9. 二分类Logistic回归模型

    Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型.这里只讲二分类. 对于二分类的Logistic回归,因变量y只有“是.否”两个取值,记为1和0.这种值为0/1的二值品质型变量 ...

随机推荐

  1. (转)Java Socket编程

    原文出自:http://www.cnblogs.com/rocomp/p/4790340.html Socket是网络驱动层提供给应用程序编程接口和一种机制.可以把Socket比喻成一个港口码头,应用 ...

  2. LINUX 笔记之常用打包压缩命令

    1.将所有.jpg文件打成一个名为all.tar的包 tar -cf all.tar *.gif 2.将所有.gif文件追加到all.tar tar -rf all.tar *.gif 3.更新原来t ...

  3. JavaScript数组去重方法汇总

    1.运用数组的特性 1.遍历数组,也遍历辅助数组,找出两个数组中是否有相同的项,若有则break,没有的话就push进去. //第一版本数组去重 function unique(arr){ var r ...

  4. sqoop1.4.6配置安装

    1.下载sqoop1.4.6 2.配置环境变量. 3.复制sqoop/conf/sqoop-env-template.sh为sqoop-env.sh 添加相关的配置 #Setpath to where ...

  5. Maximum Clique

    Maximum Clique Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...

  6. NFS存储服务部署

    第1章 NFS介绍 1.1 NFS服务内容的概述 □ RPC服务知识概念介绍说明,以及RPC服务存在价值(必须理解掌握) □ NFS服务工作原理讲解(必须理解掌握) □ NFS共享文件系统使用原理讲解 ...

  7. jquery getScript动态加载JS方法改进详解[转载]

    转载自http://www.jb51.net/article/31973.htm 有许多朋友需要使用getScript方法动态加载JS,本文将详细介绍此功能的实现方法     $.getScript( ...

  8. zabbix 3.2 高可用实现方式一,亲测无坑

    1.架构设计图 2.设计说明 1. 基础架构为LAMP环境,采用keepalived实现zabbix服务器高可用,保证主server的mysql或者httpd宕掉后能切换到从server. 2.数据库 ...

  9. Windows 配置 allure report 环境

    1:配置Java环境(运行allure 需要) 2:安装powershell 3:安装scoop方法 :运行 powershell 输入 : iex (new-object net.webclient ...

  10. Python爬虫小实践:寻找失踪人口,爬取失踪儿童信息并写成csv文件,方便存入数据库

    前两天有人私信我,让我爬这个网站,http://bbs.baobeihuijia.com/forum-191-1.html上的失踪儿童信息,准备根据失踪儿童的失踪时的地理位置来更好的寻找失踪儿童,这种 ...