MLE :最大似然估计,求得的这套参数估计能够通过指定模型以最大概率在线样本观测数据

必须来自随机样本,自变量与因变量之间是线性关系

logistic 回归没有关于自变量分布的假设条件,自变量可以连续,也可以离散,不需要假设他们之间服从多元正太分布,当然如果服从,效果更好

logistic 回归对多元共线性敏感,自变量之间存在多元共线性会导致标准误差的膨胀              ????

最大似然的性质:

一致性,渐进有效性,渐进正态性

一致性表示当样本规模增大时,模型参数向真值收敛,变得无偏

渐进有效性表示规模很大时参数估计的标准误 standard error 相应缩小

渐进正态性表示规模很大的时候,参数估计值的分布趋近正态分布,我们可以进行假设的显著性检验与计算参数的置信区间

样本数小于100时最大似然风向较大,大于500就比较充分了

6.1.1 筛选自变量

对每个变量独立进行显著性检验,对于连续的变量,我们用单变量的logistic回归进行显著性检验。对于离散的,进行二维表分析。  这个显著性的值一般是0.25

6.1.2 模型比较

嵌套,模型用L.R.检验,不嵌套的模型使用信息测度指标,见3.1.4节

6.1.3

逐步比较得到最后的我们期望需要的变量

7.数据结构的不合理情况的解决方案

过离散,空单元,完全分离,多元共线性

Logistic 回归模型 第一遍阅读笔记的更多相关文章

  1. 机器学习笔记(四)Logistic回归模型实现

     一.Logistic回归实现 (一)特征值较少的情况 1. 实验数据 吴恩达<机器学习>第二课时作业提供数据1.判断一个学生能否被一个大学录取,给出的数据集为学生两门课的成绩和是否被录取 ...

  2. 机器学习笔记(三)Logistic回归模型

    Logistic回归模型 1. 模型简介: 线性回归往往并不能很好地解决分类问题,所以我们引出Logistic回归算法,算法的输出值或者说预测值一直介于0和1,虽然算法的名字有“回归”二字,但实际上L ...

  3. 如何在R语言中使用Logistic回归模型

    在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或 ...

  4. Softmax回归——logistic回归模型在多分类问题上的推广

    Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softma ...

  5. SPSS数据分析—配对Logistic回归模型

    Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配 ...

  6. SPSS数据分析—多分类Logistic回归模型

    前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型. 多分类Logistic回归模型又分为有序多分类Logi ...

  7. SPSS数据分析—二分类Logistic回归模型

    对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能 ...

  8. logistic回归模型

    一.模型简介 线性回归默认因变量为连续变量,而实际分析中,有时候会遇到因变量为分类变量的情况,例如阴性阳性.性别.血型等.此时如果还使用前面介绍的线性回归模型进行拟合的话,会出现问题,以二分类变量为例 ...

  9. 二分类Logistic回归模型

    Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型.这里只讲二分类. 对于二分类的Logistic回归,因变量y只有“是.否”两个取值,记为1和0.这种值为0/1的二值品质型变量 ...

随机推荐

  1. 【Spring】构建Spring Web应用

    前言 学习了Spring的注解.AOP后,接着学习Spring Web,对于Web应用开发,Spring提供了Web框架. Web应用 Spring MVC初探 MVC为(Model-View-Con ...

  2. Nginx-OpenResty安装配置

    上两篇中介绍了: Ngnix技术研究系列1-通过应用场景看Nginx的反向代理 Ngnix技术研究系列2-基于Redis实现动态路由 发现,应该加一篇OpenResty的安装部署说明,方便大家按图索骥 ...

  3. 微信小程序---wx.request(OBJECT)

    详情 :https://mp.weixin.qq.com/debug/wxadoc/dev/api/network-request.html#wxrequestobject 1: 首先要配置你的域名 ...

  4. CMake vs Make对比

    程序员现在已经使用了CMake和Make了很久.当您加入大公司或开始使用大型代码库开发项目时,您需要处理所有这些构建.你必须看到这些“CMakeLists.txt”文件浮动.你应该在终端上运行“cma ...

  5. gops - Go语言程序查看和诊断工具

    想必 Java 的开发者没有不知道或者没用过 jps 这个命令的,这个命令是用来在主机上查看有哪些 Java 程序在运行的. 我刚用 Go 语言程序的时候也很苦恼,我部署在公司服务器上的 Go 程序, ...

  6. 【JDK1.8】JDK1.8集合源码阅读——LinkedHashMap

    一.前言 在上一篇随笔中,我们分析了HashMap的源码,里面涉及到了3个钩子函数,用来预设给子类--LinkedHashMap的调用,所以趁热打铁,今天我们来一起看一下它的源码吧. 二.Linked ...

  7. CSS 备忘

    border-radius :  10px  /  40px    10表示X轴半径   40表示Y轴半径   font:italic bold 13px/13px arial,sans-serif; ...

  8. 如何优雅的设计React组件

    如何优雅的设计 React 组件 如今的 web 前端已被 React.Vue 和 Angular 三分天下,一统江山十几年的 jQuery 显然已经很难满足现在的开发模式.那么,为什么大家会觉得 j ...

  9. 《Python数据分析常用手册》一、NumPy和Pandas篇

    一.常用链接: 1.Python官网:https://www.python.org/ 2.各种库的whl离线安装包:http://www.lfd.uci.edu/~gohlke/pythonlibs/ ...

  10. StackExchange.Redis的使用 Redis五种数据类型的应用

    ConnectionMultiplexer ConnectionMultiplexer 是StackExchange.Redis的核心对象,用这个类的实例来进行Redis的一系列操作,对于一个整个应用 ...