由上一节可知,在main函数中,cuda程序的并行能力是在add<<<N,1>>>( dev_a, dev_b, dev_c )函数中体现的,这里面设置的是由N个block的构成的计算网络即grid,每一个block里面有1个thread存在。那么这种选取有什么用意呢,如何针对自己的计算问题设置计算网络呢?

  首先要说明这两个数的选取没有固定的方法,完全是根据自身需求。其实它的完整形式是Kernel<<<Dg,Db, Ns, S>>>(param list);<<<>>>运算符内是核函数的执行参数,告诉编译器运行时如何启动核函数,用于说明内核函数中的线程数量,以及线程是如何组织的。

  参数Dg用于定义整个grid的维度和尺寸,即一个grid有多少个block。为dim3类型。Dim3 Dg(Dg.x, Dg.y, 1)表示grid中每行有Dg.x个block,每列有Dg.y个block,第三维恒为1。整个grid中共有Dg.x*Dg.y个block,其中Dg.x和Dg.y最大值为65535。

  参数Db用于定义一个block的维度和尺寸,即一个block有多少个thread。为dim3类型。Dim3 Db(Db.x, Db.y, Db.z)表示整个block中每行有Db.x个thread,每列有Db.y个thread,高度为Db.z。Db.x和Db.y最大值为512,Db.z最大值为62。 一个block中共有Db.x*Db.y*Db.z个thread。计算能力为1.0,1.1的硬件该乘积的最大值为768,计算能力为1.2,1.3的硬件支持的最大值为1024。

  参数Ns是一个可选参数,用于设置每个block除了静态分配的shared Memory(以后会学习到)以外,最多能动态分配的shared memory大小,单位为byte。不需要动态分配时该值为0或省略不写。

  参数S是一个cudaStream_t类型的可选参数,初始值为零,表示该核函数处在哪个流(以后会学习到)之中。

  在这个例子中,由于计算很简单,就选了一个<<<N,1>>>这种搭配。现在我们看一个复杂一点的例子。

  这个例子是说要计算两个任意长的向量的加法,可能会比比65535长,超过了block数的最大范围,甚至于比65535×512(thread上限)还长,应该怎么办呢?下面就用

<<<128,128>>>的计算网络来搞定。

  核函数改为如下:

 __global__ void add( int *a, int *b, int *c ) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
while (tid < N) {
c[tid] = a[tid] + b[tid];
tid += blockDim.x * gridDim.x;
}
}

  这段代码的精髓就在于它是一个循环,当编号为tid = threadIdx.x + blockIdx.x * blockDim.x的线程进行加法运算之后,tid += blockDim.x * gridDim.x;如果tid<N,则这个线程再做一次加法,依次循环下去。因为计算网络只有blockDim.x * gridDim.x这么大(次例为128×128),那么那些大于blockDim.x * gridDim.x并且小于N的数组分量的相加任务就需要继续分配给各个线程,如上就是用循环来分配的。

  任意长度向量相加完整代码:

/*
* Copyright 1993-2010 NVIDIA Corporation. All rights reserved.
*
* NVIDIA Corporation and its licensors retain all intellectual property and
* proprietary rights in and to this software and related documentation.
* Any use, reproduction, disclosure, or distribution of this software
* and related documentation without an express license agreement from
* NVIDIA Corporation is strictly prohibited.
*
* Please refer to the applicable NVIDIA end user license agreement (EULA)
* associated with this source code for terms and conditions that govern
* your use of this NVIDIA software.
*
*/ #include "../common/book.h" #define N (33 * 1024) __global__ void add( int *a, int *b, int *c ) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
while (tid < N) {
c[tid] = a[tid] + b[tid];
tid += blockDim.x * gridDim.x;
}
} int main( void ) {
int *a, *b, *c;
int *dev_a, *dev_b, *dev_c; // allocate the memory on the CPU
a = (int*)malloc( N * sizeof(int) );
b = (int*)malloc( N * sizeof(int) );
c = (int*)malloc( N * sizeof(int) ); // allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) ); // fill the arrays 'a' and 'b' on the CPU
for (int i=; i<N; i++) {
a[i] = i;
b[i] = * i;
} // copy the arrays 'a' and 'b' to the GPU
HANDLE_ERROR( cudaMemcpy( dev_a, a, N * sizeof(int),
cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMemcpy( dev_b, b, N * sizeof(int),
cudaMemcpyHostToDevice ) ); add<<<,>>>( dev_a, dev_b, dev_c ); // copy the array 'c' back from the GPU to the CPU
HANDLE_ERROR( cudaMemcpy( c, dev_c, N * sizeof(int),
cudaMemcpyDeviceToHost ) ); // verify that the GPU did the work we requested
bool success = true;
for (int i=; i<N; i++) {
if ((a[i] + b[i]) != c[i]) {
printf( "Error: %d + %d != %d\n", a[i], b[i], c[i] );
success = false;
}
}
if (success) printf( "We did it!\n" ); // free the memory we allocated on the GPU
HANDLE_ERROR( cudaFree( dev_a ) );
HANDLE_ERROR( cudaFree( dev_b ) );
HANDLE_ERROR( cudaFree( dev_c ) ); // free the memory we allocated on the CPU
free( a );
free( b );
free( c ); return ;
}

总结:我们通常选取一定数量的线程来解决问题,通常都选2的倍数。是由grid,block,thread,这种三级结构实现的。一般的程序的计算量都会超过线程数量,因此要合理的把计算量尽量平均分配给各个线程来计算。感觉上来说,编写核函数的精髓就是如何利用线程的序号(索引值)来分配计算任务。

cuda学习2-block与thread数量的选取的更多相关文章

  1. CUDA学习笔记-1: CUDA编程概览

    1.GPU编程模型及基本步骤 cuda程序的基本步骤如下: 在cpu中初始化数据 将输入transfer到GPU中 利用分配好的grid和block启动kernel函数 将计算结果transfer到C ...

  2. CUDA学习,第一个kernel函数及代码讲解

    前一篇CUDA学习,我们已经完成了编程环境的配置,现在我们继续深入去了解CUDA编程.本博文分为三个部分,第一部分给出一个代码示例,第二部分对代码进行讲解,第三部分根据这个例子介绍如何部署和发起一个k ...

  3. CUDA学习之二:shared_memory使用,矩阵相乘

    CUDA中使用shared_memory可以加速运算,在矩阵乘法中是一个体现. 矩阵C = A * B,正常运算时我们运用 C[i,j] = A[i,:] * B[:,j] 可以计算出结果.但是在CP ...

  4. 【CUDA学习】GPU硬件结构

    GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor  最 ...

  5. CUDA学习笔记(四)——CUDA性能

    转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm5h.html 四.CUDA性能 CUDA中的block被划分成一个个的warp,在GeForce880 ...

  6. CUDA学习笔记(一)【转】

    CUDA编程中,习惯称CPU为Host,GPU为Device.编程中最开始接触的东西恐怕是并行架构,诸如Grid.Block的区别会让人一头雾水,我所看的书上所讲述的内容比较抽象,对这些概念的内容没有 ...

  7. cuda学习1-初始庐山真面目

    cuda作为gpu计算中的代表,拥有着超级高的计算效率,其原因是gpu实际相当与一台超级并行机组,使用过MPI做并行计算的人们可能知道,所谓的并行计算,简单讲就是用多个U(计算单元)来完成一个U的计算 ...

  8. 原 iOS深入学习(Block全面分析)http://my.oschina.net/leejan97/blog/268536

    原 iOS深入学习(Block全面分析) 发表于1年前(2014-05-24 16:45)   阅读(26949) | 评论(14) 39人收藏此文章, 我要收藏 赞21 12月12日北京OSC源创会 ...

  9. CUDA学习之一:二维矩阵加法

    今天忙活了3个小时,竟然被一个苦恼的CUDA小例程给困住了,本来是参照Rachal zhang大神的CUDA学习笔记来一个模仿,结果却自己给自己糊里糊涂,最后还是弄明白了一些. RZ大神对CUDA关于 ...

随机推荐

  1. JDBC基础学习(六)—数据库连接池

    一.数据库连接池介绍 1.数据库连接池的缘由      对于一个简单的数据库应用,由于对于数据库的访问不是很频繁.这时可以简单地在需要访问数据库时,就新创建一个连接,用完后就关闭它,这样做也不会带来什 ...

  2. npm安装

    淘宝镜像http://npm.taobao.org/ $ npm install -g cnpm --registry=https://registry.npm.taobao.org mac下 sud ...

  3. Java实现Android,iOS设备实时监控

    Java实现Android设备实时监控 设计思路: 第一,启动一个实时截图线程,负责实时截取Android设备屏幕,保存到本地路径. 第二,在JSP页面,定义一个img对象,实时更换img对象的src ...

  4. T-SQL编程中的异常处理-异常捕获(catch)与抛出异常(throw)

    本文出处: http://www.cnblogs.com/wy123/p/6743515.html T-SQL编程与应用程序一样,都有异常处理机制,比如异常的捕获与异常的抛出,本文简单介绍异常捕获与异 ...

  5. CSS浮动专题!

    在css中,浮动问题可能是很多刚入门的小白比较头疼的问题. 1,首先先来介绍一下两种浮动类型:左浮动和右浮动 1) float:left;左浮动,后面的内容会流向对象的右侧 2) float:righ ...

  6. Android sdk配置 常见问题及处理方法

    1. 下载sdk压缩包,解压后显示 2.双击SDK Manager.exe 程序进入如下界面 注:有的童鞋可能遇到如下问题 一般将一和二两种操作都完成就OK了 一. 更新sdk,遇到了更新下载失败问题 ...

  7. mybatis插入List集合数据

    处女帖 今天做完一个定时任务将一个表中的数据每天统计到另外一个表中,开始是用循环的方式向数据库添加,觉得数据库可能访问压力过大,所以就使用了mybatis的foreach标签来稍微的减少压力. 首先封 ...

  8. CentOS 下PHP的卸载

    一.卸载1.使用命令 rpm -qa|grep 列出需要卸载的软件包rpm -qa|grep php使用rpm -e 加包名rpm -e php-4.3.9-3.15 二.安装1.首先更新系统yum  ...

  9. java 操作FTP

    package comm.ftp; import java.io.ByteArrayInputStream; import java.io.File; import java.io.FileInput ...

  10. Redis 基本安全规范文档

    温馨提示:我在一家手游的公司工作,因为经常用到redis,特为此整理文档(借鉴过大神的文章): 一.什么是redis(出自百度百科)? redis是一个key-value存储系统.和Memcached ...