Description

Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

Consider the following diophantine equation:

1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)

Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions:

1 / 5 + 1 / 20 = 1 / 4 
1 / 6 + 1 / 12 = 1 / 4 
1 / 8 + 1 / 8 = 1 / 4

Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly? 

 

Input

The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9). 
 

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line. 
 

Sample Input

2
4
1260
 

Sample Output

Scenario #1:
3

Scenario #2:
113

 
 #include <string.h>
#include <stdio.h>
#define M 40000
int prime[];
void dabiao()//筛选素数
{
int i,j;
memset(prime,,sizeof(prime));
for(i=; i<=M; i++)
{
if(prime[i]==)
{
for(j=i+i; j<=M; j+=i)
{
prime[j]=;
}
}
}
}
int fenjie(int n)//素数因子分解
{
int i,k,sum=;
for(i=; i<=M; i++)
{
if(n==)
break;
if(prime[i]==)
{
k=;
while(n%i==)
{
k++;
n=n/i;
}
sum=sum*(*k+);
}
}
if(n>)
sum=sum*;
return sum;
}
int main()
{ dabiao();
int n,i,j,t;
scanf("%d",&t);
int p=;
while(t--)
{
scanf("%d",&n);
printf("Scenario #%d:\n",p);
printf("%d\n\n",(fenjie(n)+)/);
p++;
}
return ;
}

hdu Diophantus of Alexandria(素数的筛选+分解)的更多相关文章

  1. HDOJ/HDU 2710 Max Factor(素数快速筛选~)

    Problem Description To improve the organization of his farm, Farmer John labels each of his N (1 < ...

  2. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  3. hdu 1299 Diophantus of Alexandria(数学题)

    题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...

  4. 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

  5. hdoj 1299 Diophantus of Alexandria

    hdoj 1299 Diophantus of Alexandria 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1299 题意:求 1/x + 1/y ...

  6. HDU 2098 分拆素数和(素数)

    HDU 2098 分拆素数和(素数) http://acm.hdu.edu.cn/showproblem.php?pid=2098 题意: 给你一个偶数,问你这个偶数有多少种方式能由两个不同的素数构成 ...

  7. HDU 1299Diophantus of Alexandria

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  8. Diophantus of Alexandria[HDU1299]

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...

  9. HDU 2098 分拆素数和

    HDU 2098 分拆素数和 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768K (Java/Others) [题目描述 ...

随机推荐

  1. centos7安装并配置svn(转)

    一.安装 1. 通过 yum install subversion来安装 2. 查看svn版本 使用: svnserve –version 3. 创建svn版本库 使用命令: svnadmin cre ...

  2. openGL研究钞四 : 关于颜色, 尺寸, 虚线, 多边形逆转, 空洞, 使用位图

    转载请保留源,,,,hushuai1992http://blog.csdn.net/u013642494/article/category/2675731 额. 这个标题我都不知道该怎么起了. 假设没 ...

  3. HTML5实际和离线应用分析

    当前离线Web申请书,即,该装置不能访问因特网时的应用的执行.HTML5离线应用重点,主要开发人员希望.步骤离线应用开发有:首先我们应该知道设备是否可以连接;然后,它也应该可以访问某些资源(像.CSS ...

  4. Linux高性能server规划——多线程编程(在)

    多线程编程 Linux主题概述 线程模型 线程是程序中完毕一个独立任务的完整执行序列.即一个可调度的实体. 依据执行环境和调度者的身份.线程可分为内核线程和用户线程.内核线程,在有的系统上也称为LWP ...

  5. 《Linux Device Drivers》第十六章 块设备驱动程序——note

    基本介绍 块设备驱动程序通过主传动固定大小数据的随机访问设备 Linux核心Visual块设备作为基本设备和不同的字符设备类型 Linux块设备驱动程序接口,使块设备最大限度地发挥其效用.一个问题 一 ...

  6. ios说说自己的计划是什么样的发展论坛

    ios发展论坛在显示 iOS 5 在,主界面包含以下内置的应用程序: 信息.日历.照片.      YouTube.股市.地图(AGPS辅助的Google地图).天气.时间.计算机.备忘录.系统设置. ...

  7. 第十七章——配置SQLServer(1)——为SQLServer配置更多的处理器

    原文:第十七章--配置SQLServer(1)--为SQLServer配置更多的处理器 前言: SQLServer提供了一个系统存储过程,SP_Configure,可以帮助你管理实例级别的配置.微软建 ...

  8. nyist 488 素数环(搜索+回溯)

     素数环 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描写叙述 有一个整数n,把从1到n的数字无反复的排列成环,且使每相邻两个数(包含首尾)的和都为素数,称为素数环. ...

  9. 非阻塞IOserver型号

    让我们来考虑一个场景,你和百万玩家的魔兽世界的忠实粉丝.时间之旅打每到周末boss. 每当周末比赛server在亚历山大,因为至少在同一时间数十万用户在线. 假设我们的多-threaded果酱serv ...

  10. DBA查询命令积累——不断更新

    原文:DBA查询命令积累--不断更新 一.服务器配置: 1.兼容级别:兼容级别只影响指定数据库中的行为,而不会影响整个服务器上的行为. 1.1.查看数据库兼容级别及更改兼容级别: SELECT com ...