Description

Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

Consider the following diophantine equation:

1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)

Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions:

1 / 5 + 1 / 20 = 1 / 4 
1 / 6 + 1 / 12 = 1 / 4 
1 / 8 + 1 / 8 = 1 / 4

Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly? 

 

Input

The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9). 
 

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line. 
 

Sample Input

2
4
1260
 

Sample Output

Scenario #1:
3

Scenario #2:
113

 
 #include <string.h>
#include <stdio.h>
#define M 40000
int prime[];
void dabiao()//筛选素数
{
int i,j;
memset(prime,,sizeof(prime));
for(i=; i<=M; i++)
{
if(prime[i]==)
{
for(j=i+i; j<=M; j+=i)
{
prime[j]=;
}
}
}
}
int fenjie(int n)//素数因子分解
{
int i,k,sum=;
for(i=; i<=M; i++)
{
if(n==)
break;
if(prime[i]==)
{
k=;
while(n%i==)
{
k++;
n=n/i;
}
sum=sum*(*k+);
}
}
if(n>)
sum=sum*;
return sum;
}
int main()
{ dabiao();
int n,i,j,t;
scanf("%d",&t);
int p=;
while(t--)
{
scanf("%d",&n);
printf("Scenario #%d:\n",p);
printf("%d\n\n",(fenjie(n)+)/);
p++;
}
return ;
}

hdu Diophantus of Alexandria(素数的筛选+分解)的更多相关文章

  1. HDOJ/HDU 2710 Max Factor(素数快速筛选~)

    Problem Description To improve the organization of his farm, Farmer John labels each of his N (1 < ...

  2. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  3. hdu 1299 Diophantus of Alexandria(数学题)

    题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...

  4. 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

  5. hdoj 1299 Diophantus of Alexandria

    hdoj 1299 Diophantus of Alexandria 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1299 题意:求 1/x + 1/y ...

  6. HDU 2098 分拆素数和(素数)

    HDU 2098 分拆素数和(素数) http://acm.hdu.edu.cn/showproblem.php?pid=2098 题意: 给你一个偶数,问你这个偶数有多少种方式能由两个不同的素数构成 ...

  7. HDU 1299Diophantus of Alexandria

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  8. Diophantus of Alexandria[HDU1299]

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...

  9. HDU 2098 分拆素数和

    HDU 2098 分拆素数和 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768K (Java/Others) [题目描述 ...

随机推荐

  1. GUIForDebug

    package gui; import org.luaj.vm2.Globals; import org.luaj.vm2.LuaValue; import org.luaj.vm2.ast.Chun ...

  2. Spring Assert主张 (参议院检测工具的方法-主张)

    Web 收到申请表格提交的数据后都需要对其进行合法性检查,假设表单数据是不合法的,该请求将被拒绝.分类似的,当我们写的类方法,该方法还经常需要组合成参 法国检查.假设参议院不符合要求,方法通过抛出异常 ...

  3. 应用层协议系列(两)——HTTPserver之http协议分析

    上一篇文章<抄nginx Httpserver设计与实现(一)--多进程和多通道IO现>中实现了一个仿照nginx的支持高并发的server.但仅仅是实现了port监听和数据接收.并没有实 ...

  4. WPF技术触屏上的应用系列(三): 视频播放器的使用及视频播放、播放、暂停、可拖动播放进度效果实现

    原文:WPF技术触屏上的应用系列(三): 视频播放器的使用及视频播放.播放.暂停.可拖动播放进度效果实现 去年某客户单位要做个大屏触屏应用,要对档案资源进行展示之用.客户端是Window7操作系统,5 ...

  5. MATLAB描绘极坐标图像——polar

    polar可用于描绘极坐标图像. 最简单而经常使用的命令格式:POLAR(THETA, RHO)  当中,THETA是用弧度制表示的角度,RHO是相应的半径. 例: a=-2*pi:.001:2*pi ...

  6. Best Time to Buy and Sell Stock I,II,III [leetcode]

    Best Time to Buy and Sell Stock I 你只能一个操作:维修preMin拍摄前最少发生值 代码例如以下: int maxProfit(vector<int> & ...

  7. Linux课程_系统配置和日常维护

    1.设置命令输入提示格公式:"username:当前文件夹$" 2.设置命令输入提示行格式为:"当前系统时间-用户#"(提示:Shell将通过反引號" ...

  8. jquery自定义插件——window实现

    该示例实现弹出窗口效应: 1.jquery.show.js /* * 开发人员:lzugis * 开发时间:2014年6月10日 * 实现功能:点击在鼠标位置显示div * 版本号序号:1.0 */ ...

  9. Action、Category、Data、Extras知识具体解释

    开头 Intent作为联系各Activity之间的纽带,其作用并不仅仅仅仅限于简单的数据传递.通过其自带的属性,事实上能够方便的完毕非常多较为复杂的操作.比如直接调用拨号功能.直接自己主动调用合适的程 ...

  10. HDU2647(拓扑排序+反向建图)

    题意不说了,说下思路. 给出的关系是a要求的工资要比b的工资多,因为尽可能的让老板少付钱,那么a的工资就是b的工资+1.能够确定关系为a>b,依据拓扑排序建边的原则是把"小于" ...