Description

Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

Consider the following diophantine equation:

1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)

Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions:

1 / 5 + 1 / 20 = 1 / 4 
1 / 6 + 1 / 12 = 1 / 4 
1 / 8 + 1 / 8 = 1 / 4

Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly? 

 

Input

The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9). 
 

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line. 
 

Sample Input

2
4
1260
 

Sample Output

Scenario #1:
3

Scenario #2:
113

 
 #include <string.h>
#include <stdio.h>
#define M 40000
int prime[];
void dabiao()//筛选素数
{
int i,j;
memset(prime,,sizeof(prime));
for(i=; i<=M; i++)
{
if(prime[i]==)
{
for(j=i+i; j<=M; j+=i)
{
prime[j]=;
}
}
}
}
int fenjie(int n)//素数因子分解
{
int i,k,sum=;
for(i=; i<=M; i++)
{
if(n==)
break;
if(prime[i]==)
{
k=;
while(n%i==)
{
k++;
n=n/i;
}
sum=sum*(*k+);
}
}
if(n>)
sum=sum*;
return sum;
}
int main()
{ dabiao();
int n,i,j,t;
scanf("%d",&t);
int p=;
while(t--)
{
scanf("%d",&n);
printf("Scenario #%d:\n",p);
printf("%d\n\n",(fenjie(n)+)/);
p++;
}
return ;
}

hdu Diophantus of Alexandria(素数的筛选+分解)的更多相关文章

  1. HDOJ/HDU 2710 Max Factor(素数快速筛选~)

    Problem Description To improve the organization of his farm, Farmer John labels each of his N (1 < ...

  2. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  3. hdu 1299 Diophantus of Alexandria(数学题)

    题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...

  4. 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

  5. hdoj 1299 Diophantus of Alexandria

    hdoj 1299 Diophantus of Alexandria 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1299 题意:求 1/x + 1/y ...

  6. HDU 2098 分拆素数和(素数)

    HDU 2098 分拆素数和(素数) http://acm.hdu.edu.cn/showproblem.php?pid=2098 题意: 给你一个偶数,问你这个偶数有多少种方式能由两个不同的素数构成 ...

  7. HDU 1299Diophantus of Alexandria

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  8. Diophantus of Alexandria[HDU1299]

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...

  9. HDU 2098 分拆素数和

    HDU 2098 分拆素数和 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768K (Java/Others) [题目描述 ...

随机推荐

  1. Android使用Activity用作弹出式对话框

    转载请表明出处:http://blog.csdn.net/lmj623565791/article/details/23116115 Android中可用于实现对话框的有Dialog,PopupWin ...

  2. Linux中查看socket状态(转)

    Linux中查看socket状态:cat /proc/net/sockstat #(这个是ipv4的) sockets: used 137 TCP: inuse 49 orphan 0 tw 3272 ...

  3. SecureCRT 6.7.1 RI和谐 皴 补丁 方法

    它之前被使用SecureCRT 6.5.3 版本号,咋看和谐补丁,即使中国版本也可(现在才发现SecureCRT.6.2.0) 可是换为 6.7.1 后就怎么也注冊不了了.. 没办法试了各种办法: 先 ...

  4. 基本介绍LINUX远程PC软件:PUTTY、SecureCRT、X-Manager

    ***********************************************声明************************************************ 原创 ...

  5. 【Linux探索之旅】开宗明义+第一部分第一课:什么是Linux?

    内容简介 1.课程大纲 2.第一部分第一课:什么是Linux? 3.第一部分第二课预告:下载Linux,免费的噢!   开宗明义 我们总听到别人说:Linux挺复杂的,是给那些追求逼格的程序员用的.咱 ...

  6. 【cocos2d-x】尝鲜 Cocos Code IDE(不断更新)

    Cocos Code IDE 是一个基于 Eclipse 的跨平台 IDE ,专门为 cocos2d lua & js 开发者准备,通过此工具.你能够方便的创建游戏project.编写而且调试 ...

  7. Objective-C辛格尔顿

    单例类是一种特殊的类.在一个进程种仅仅会存在一个该类的对象,在iOS应用中仅仅会出现一个对象.这样的设计模式在系统框架中很多地方都使用了.如NSFileManager.UIApplication等. ...

  8. 【转】Robot Framework 快速入门

    目录 介绍 概述 安装 运行demo 介绍样例应用程序 测试用例 第一个测试用例 高级别测试用例 数据驱动测试用例 关键词keywords 内置关键词 库关键词 用户定义关键词 变量 定义变量 使用变 ...

  9. RH133读书笔记(7)-Lab 7 Advanced Filesystem Mangement

    Lab 7 Advanced Filesystem Mangement Goal: Develop skills and knowlege related to Software RAID, LVM, ...

  10. 概率统计(DP)

    问题叙述性说明 生成n个月∈[a,b]随机整数.并且将它们输出到x概率. 输入格式 输入线跟四个整数n.a,b,x,用空格分隔. 输出格式 输出一行包括一个小数位和为x的概率.小数点后保留四位小数 例 ...