Tree Cutting

Time Limit: 4000/2000 MS (Java/Others)
Memory Limit: 262144/131072 K (Java/Others)
Problem Description

Byteasar has a tree TTT with nnn vertices conveniently labeled with 1,2,...,n1,2,...,n1,2,...,n. Each vertex of the tree has an integer value viv_iv​i​​.

The value of a non-empty tree TTT is equal to v1⊕v2⊕...⊕vnv_1\oplus v_2\oplus ...\oplus v_nv​1​​⊕v​2​​⊕...⊕v​n​​, where ⊕\oplus⊕ denotes bitwise-xor.

Now for every integer kkk from [0,m)[0,m)[0,m), please calculate the number of non-empty subtree of TTT which value are equal to kkk.

A subtree of TTT is a subgraph of TTT that is also a tree.

Input

The first line of the input contains an integer T(1≤T≤10)T(1\leq T\leq10)T(1≤T≤10), denoting the number of test cases.

In each test case, the first line of the input contains two integers n(n≤1000)n(n\leq 1000)n(n≤1000) and m(1≤m≤210)m(1\leq m\leq 2^{10})m(1≤m≤2​10​​), denoting the size of the tree TTT and the upper-bound of vvv.

The second line of the input contains nnn integers v1,v2,v3,...,vn(0≤vi<m)v_1,v_2,v_3,...,v_n(0\leq v_i < m)v​1​​,v​2​​,v​3​​,...,v​n​​(0≤v​i​​<m), denoting the value of each node.

Each of the following n−1n-1n−1 lines contains two integers ai,bia_i,b_ia​i​​,b​i​​, denoting an edge between vertices aia_ia​i​​ and bi(1≤ai,bi≤n)b_i(1\leq a_i,b_i\leq n)b​i​​(1≤a​i​​,b​i​​≤n).

It is guaranteed that mmm can be represent as 2k2^k2​k​​, where kkk is a non-negative integer.

Output

For each test case, print a line with mmm integers, the iii-th number denotes the number of non-empty subtree of TTT which value are equal to iii.

The answer is huge, so please module 109+710^9+710​9​​+7.

Sample Input
2
4 4
2 0 1 3
1 2
1 3
1 4
4 4
0 1 3 1
1 2
1 3
1 4
Sample Output
3 3 2 3
2 4 2 3 分析:dp[i][j]表示以i为根异或值为j的方案数;
   在加入i的儿子x的子树方案时,dp[i][j]=dp[i][j]+dp[i][k]*dp[x][t](k^t=j);
   其中dp[i][k]*dp[x][t](k^t=j)的复杂度为n²,可以用异或卷积加速到nlogn;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define vi vector<int>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define rev (mod+1)/2
#define inf 0x3f3f3f3f
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
using namespace std;
const int maxn=1e3+;
int n,m,k,t,a[maxn],dp[maxn][maxn],tmp[maxn],ans[maxn];
vi e[maxn];
void fwt(int *a,int n)
{
for(int d=;d<n;d<<=)
for(int m=d<<,i=;i<n;i+=m)
for(int j=;j<d;j++)
{
int x=a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%mod,a[i+j+d]=(x-y+mod)%mod;
}
}
void ufwt(int *a,int n)
{
for(int d=;d<n;d<<=)
for(int m=d<<,i=;i<n;i+=m)
for(int j=;j<d;j++)
{
int x=a[i+j],y=a[i+j+d];
a[i+j]=1LL*(x+y)*rev%mod,a[i+j+d]=(1LL*(x-y)*rev%mod+mod)%mod;
}
}
void solve(int *a,int *b,int n)
{
fwt(a,n);
fwt(b,n);
for(int i=;i<n;i++)a[i]=1LL*a[i]*b[i]%mod;
ufwt(a,n);
}
void dfs(int now,int pre)
{
dp[now][a[now]]=;
for(int x:e[now])
{
if(x==pre)continue;
dfs(x,now);
for(int i=;i<m;i++)
tmp[i]=dp[now][i];
solve(dp[now],dp[x],m);
for(int i=;i<m;i++)
dp[now][i]=(dp[now][i]+tmp[i])%mod;
}
for(int i=;i<m;i++)
ans[i]=(ans[i]+dp[now][i])%mod;
}
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
rep(i,,n)
{
scanf("%d",&a[i]),e[i].clear();
rep(j,,m-)dp[i][j]=;
}
rep(i,,m-)ans[i]=;
rep(i,,n-)
{
scanf("%d%d",&j,&k);
e[j].pb(k),e[k].pb(j);
}
dfs(,);
rep(i,,m-)printf("%d%c",ans[i],i<m-?' ':'\n');
}
//system ("pause");
return ;
}

Tree Cutting的更多相关文章

  1. 【HDU 5909】 Tree Cutting (树形依赖型DP+点分治)

    Tree Cutting Problem Description Byteasar has a tree T with n vertices conveniently labeled with 1,2 ...

  2. BZOJ3391: [Usaco2004 Dec]Tree Cutting网络破坏

    3391: [Usaco2004 Dec]Tree Cutting网络破坏 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 47  Solved: 37[ ...

  3. BZOJ 3391: [Usaco2004 Dec]Tree Cutting网络破坏( dfs )

    因为是棵树 , 所以直接 dfs 就好了... ---------------------------------------------------------------------------- ...

  4. 3391: [Usaco2004 Dec]Tree Cutting网络破坏

    3391: [Usaco2004 Dec]Tree Cutting网络破坏 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 76  Solved: 59[ ...

  5. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

  6. POJ 2378.Tree Cutting 树形dp 树的重心

    Tree Cutting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4834   Accepted: 2958 Desc ...

  7. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  8. HDU 5909 Tree Cutting 动态规划 快速沃尔什变换

    Tree Cutting 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T ...

  9. POJ 2378 Tree Cutting 3140 Contestants Division (简单树形dp)

    POJ 2378 Tree Cutting:题意 求删除哪些单点后产生的森林中的每一棵树的大小都小于等于原树大小的一半 #include<cstdio> #include<cstri ...

随机推荐

  1. Understanding continuations

    原文地址http://fsharpforfunandprofit.com/posts/computation-expressions-continuations/ 上一篇中我们看到复杂代码是如何通过使 ...

  2. 5、判断、循环、数组综合练习案例(迷你DVD)

    迷你dvd代码如下: package com.manager; import java.util.Scanner; public class DVDManage { public static voi ...

  3. osg蝴蝶纹理

    #include <osgViewer/Viewer> #include <osgDB/WriteFile> #include <osg/StateSet> #in ...

  4. 亲身体验:digitalocean vps能做的10件事

    我写过一篇亲身体验:digitalocean和linode评测哪个好,帮助不少网友选购价格便宜性能优异的免备案vps,相信大家对两家产品有所了解.vps的性能和用途远远超过传统的虚拟主机,你拥有独立I ...

  5. redhat 时区修改

    修改系统时区,发现只需要一个命令就可以解决 修改之前: cp /usr/share/zoneinfo/Asia/Chongqing  /etc/localtime 修改之后:

  6. Android Lights

    Android Lights 很多Android手机上都配有LED灯,手机在充电.新来短信等时候都会有相应的指示灯提示. Android系统之中,一共定义了8个逻辑灯,包含:背光,键盘灯,按键灯,充电 ...

  7. CentOS 7 多网卡绑定

    根据官方文档Red_Hat_Enterprise_Linux-7-Networking_Guide-en-US用nmcli做起来还是相当容易的.下面把俺的步骤贴下. 1.查看目前网卡的名称和状态.#n ...

  8. HeapSpray初窥(2014.12)

    注:环境是xp+ie8 1.HeapSpray简介 Windows的堆因为动态分配和释放的特点,其看起来是不连续(没有规律的),但是仍可以找到一定的规律:大量的连续分配会更倾向使用连续的地址,减少了碎 ...

  9. npm常用指令

    安装: npm install <name> npm install <name> 安装依赖包,默认安装最新版本,也可在后面加上版本号,并且将安装信息加入项目的package. ...

  10. 第三十七节,hashlib加密模块

    在使用hashlib模块时需要先 import hashlib 引入模块 用于加密相关的操作,代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA ...