Problem Description
To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.

You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.

Now you want to know the minimum steps needed to get the problem proved.
 
Input
The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.

Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
 
Output
For each case, output a single integer: the minimum steps needed.
 
Sample Input
4 0
3 2
1 2
1 3
 
Sample Output
4
2
Hint
Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
 
强联通缩点:加入几条边成强联通分量:设缩点后全部点中出度为0的点为d_1,入度为0点为d_2,则答案为max(d_1,d_2);
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<limits.h>
typedef long long LL;
using namespace std; #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a ) const int maxn=20000+100;
const int maxm=100000;
struct node{
int u,v;
int next;
}e[maxm];
int head[maxn],cntE;
int DFN[maxn],low[maxn];
int s[maxm],top,index,cnt;
int belong[maxn],instack[maxn];
int in[maxn],out[maxn];
int n,m;
void init()
{
top=cntE=0;
index=cnt=0;
CLEAR(DFN,0);
CLEAR(head,-1);
CLEAR(instack,0);
// CLEAR(belong,0);
}
void addedge(int u,int v)
{
e[cntE].u=u;e[cntE].v=v;
e[cntE].next=head[u];
head[u]=cntE++;
}
void Tarjan(int u)
{
DFN[u]=low[u]=++index;
instack[u]=1;
s[top++]=u;
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(!DFN[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],DFN[v]);
}
int v;
if(DFN[u]==low[u])
{
cnt++;
do{
v=s[--top];
belong[v]=cnt;
instack[v]=0;
}while(u!=v);
}
}
void work()
{
REPF(i,1,n)
if(!DFN[i]) Tarjan(i);
if(cnt<=1)
{
puts("0");
return ;
}
CLEAR(in,0);
CLEAR(out,0);
for(int i=0;i<cntE;i++)
{
int u=e[i].u,v=e[i].v;
if(belong[u]!=belong[v])
in[belong[v]]++,out[belong[u]]++;
}
int d_1=0,d_2=0;
REPF(i,1,cnt)
{
if(!in[i])
d_1++;
if(!out[i])
d_2++;
}
printf("%d\n",max(d_1,d_2));
}
int main()
{
int u,v;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
}
work();
}
return 0;
}

HDU 3836 Equivalent SetsTarjan+缩点)的更多相关文章

  1. hdu 3836 Equivalent Sets

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3836 Equivalent Sets Description To prove two sets A ...

  2. [tarjan] hdu 3836 Equivalent Sets

    主题链接: http://acm.hdu.edu.cn/showproblem.php? pid=3836 Equivalent Sets Time Limit: 12000/4000 MS (Jav ...

  3. hdu 3836 Equivalent Sets(tarjan+缩点)

    Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...

  4. hdu 3836 Equivalent Sets trajan缩点

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  5. hdu - 3836 Equivalent Sets(强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=3836 判断至少需要加几条边才能使图变成强连通 把图缩点之后统计入度为0的点和出度为0的点,然后两者中的最大值就是 ...

  6. hdu 3836 Equivalent Sets(强连通分量--加边)

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  7. hdu——3836 Equivalent Sets

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  8. HDU - 3836 Equivalent Sets (强连通分量+DAG)

    题目大意:给出N个点,M条边.要求你加入最少的边,使得这个图变成强连通分量 解题思路:先找出全部的强连通分量和桥,将强连通分量缩点.桥作为连线,就形成了DAG了 这题被坑了.用了G++交的,结果一直R ...

  9. hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

随机推荐

  1. 飘逸的python - yield简明教程

    发现还有非常多人对yield不理解,云里雾里,于是试着用文字表述. 仅仅要函数含有yield语句,它就返回一个生成器.所以我们与其把其看成函数定义,不如看作是生成器定义.函数用return返回,而生成 ...

  2. hdu4521 小明系列的问题——小明序列(LIS变种 (段树+单点更新解决方案))

    链接: huangjing 题目:中文题目 思路: 1:这个题目假设去掉那个距离大于d的条件,那么必定是一个普通的LIS.可是加上那个条件后就变得复杂了.我用的线段树的解法. . .就是採用延迟更新的 ...

  3. 不知道的JavaScript

    你不知道的JavaScript上卷笔记 前言 You don't know JavaScript是github上一个系列文章  初看到这一标题的时候,感觉怎么老外也搞标题党,用这种冲突性比较强的题目吸 ...

  4. mongodb中的排序和索引快速学习

    在mongodb中,排序和索引其实都是十分容易的,先来小结下排序: 1 先插入些数据    db.SortTest.insert( { name : "Denis", age : ...

  5. malloc函数的一种简单的原理性实现

    malloc()是C语言中动态存储管理的一组标准库函数之一.其作用是在内存的动态存储区中分配一个长度为size的连续空间.其参数是一个无符号整形数,返回值是一个指向所分配的连续存储域的起始地址的指针 ...

  6. linux下查看日志基本命令

    1.cat命令: 功能:1)显示整个文件. 演示样例: $ cat fileName 2)把文件串连接后传到基本输出,如将几个文件合并为一个文件或输出到屏幕. 演示样例: $ cat file1 fi ...

  7. sar使用说明

     sar这东西,一开始还以为是内部有的,原来是外部的工具,可以到 http://pagesperso-orange.fr/sebastien.godard/download.html 去下载 1 安装 ...

  8. Linux Server

    Linux Server CentOS 6.3下配置iSCSI网络存储 摘要: 一.简介iSCSI(internet SCSI)技术由IBM公司研究开发,是一个供硬件设备使用的.可以在IP协议的上层运 ...

  9. C#如何在钉钉开发平台

    C#如何在钉钉开发平台中创建部门   钉钉是阿里巴巴专为中小企业和团队打造的沟通.协同的多端平台,钉钉开放平台旨在为企业提供更为丰富的办公协同解决方案.通过钉钉开放平台,企业或第三方合作伙伴可以帮助企 ...

  10. Egret是一套完整的HTML5游戏开发解决方案

    Egret是一套完整的HTML5游戏开发解决方案.Egret中包含多个工具以及项目.Egret Engine是一个基于TypeScript语言开发的HTML5游戏引擎,该项目在BSD许可证下发布.使用 ...