Problem Description
To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.

You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.

Now you want to know the minimum steps needed to get the problem proved.
 
Input
The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.

Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
 
Output
For each case, output a single integer: the minimum steps needed.
 
Sample Input
4 0
3 2
1 2
1 3
 
Sample Output
4
2
Hint
Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
 
强联通缩点:加入几条边成强联通分量:设缩点后全部点中出度为0的点为d_1,入度为0点为d_2,则答案为max(d_1,d_2);
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<limits.h>
typedef long long LL;
using namespace std; #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a ) const int maxn=20000+100;
const int maxm=100000;
struct node{
int u,v;
int next;
}e[maxm];
int head[maxn],cntE;
int DFN[maxn],low[maxn];
int s[maxm],top,index,cnt;
int belong[maxn],instack[maxn];
int in[maxn],out[maxn];
int n,m;
void init()
{
top=cntE=0;
index=cnt=0;
CLEAR(DFN,0);
CLEAR(head,-1);
CLEAR(instack,0);
// CLEAR(belong,0);
}
void addedge(int u,int v)
{
e[cntE].u=u;e[cntE].v=v;
e[cntE].next=head[u];
head[u]=cntE++;
}
void Tarjan(int u)
{
DFN[u]=low[u]=++index;
instack[u]=1;
s[top++]=u;
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(!DFN[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],DFN[v]);
}
int v;
if(DFN[u]==low[u])
{
cnt++;
do{
v=s[--top];
belong[v]=cnt;
instack[v]=0;
}while(u!=v);
}
}
void work()
{
REPF(i,1,n)
if(!DFN[i]) Tarjan(i);
if(cnt<=1)
{
puts("0");
return ;
}
CLEAR(in,0);
CLEAR(out,0);
for(int i=0;i<cntE;i++)
{
int u=e[i].u,v=e[i].v;
if(belong[u]!=belong[v])
in[belong[v]]++,out[belong[u]]++;
}
int d_1=0,d_2=0;
REPF(i,1,cnt)
{
if(!in[i])
d_1++;
if(!out[i])
d_2++;
}
printf("%d\n",max(d_1,d_2));
}
int main()
{
int u,v;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
}
work();
}
return 0;
}

HDU 3836 Equivalent SetsTarjan+缩点)的更多相关文章

  1. hdu 3836 Equivalent Sets

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3836 Equivalent Sets Description To prove two sets A ...

  2. [tarjan] hdu 3836 Equivalent Sets

    主题链接: http://acm.hdu.edu.cn/showproblem.php? pid=3836 Equivalent Sets Time Limit: 12000/4000 MS (Jav ...

  3. hdu 3836 Equivalent Sets(tarjan+缩点)

    Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...

  4. hdu 3836 Equivalent Sets trajan缩点

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  5. hdu - 3836 Equivalent Sets(强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=3836 判断至少需要加几条边才能使图变成强连通 把图缩点之后统计入度为0的点和出度为0的点,然后两者中的最大值就是 ...

  6. hdu 3836 Equivalent Sets(强连通分量--加边)

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  7. hdu——3836 Equivalent Sets

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  8. HDU - 3836 Equivalent Sets (强连通分量+DAG)

    题目大意:给出N个点,M条边.要求你加入最少的边,使得这个图变成强连通分量 解题思路:先找出全部的强连通分量和桥,将强连通分量缩点.桥作为连线,就形成了DAG了 这题被坑了.用了G++交的,结果一直R ...

  9. hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

随机推荐

  1. 明晚8点,捷微团队QQ群公开课,解说jeewx2.0版本号maven环境的搭建入门!

    2014-08-13号晚8点,捷微团队QQ群公开课,解说jeewx2.0版本号maven环境的搭建入门! 讲师:刘强(团队成员) QQ群:287090836 (JAVA版本号微信开源项目) http: ...

  2. C#向并口设备发送指令以获取并口设备的状态

    using System; using System.Diagnostics; using System.Runtime.InteropServices; using System.Text; usi ...

  3. web框架python

    22.python笔记之web框架   一.web框架本质 1.基于socket,自己处理请求 #!/usr/bin/env python3 #coding:utf8 import socket de ...

  4. 智能手机的工业控制应用方案——SimpleWiFi在工业控制领域应用

    智能手机的工业控制应用方案——SimpleWiFi在工业控制领域应用    先上图: 现在的智能控制都是基于微控制器,随着智能的手持终端的普及,基于智能终端的控制就会越来越普遍. WIFI便是其中的一 ...

  5. Dubbo与Zookeeper、SpringMVC整合和使用(负载均衡、容错)(转)

    互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,Dubbo是一个分布式服务框架,在这种情况下诞生的.现在核心业务抽取出来,作为独立的服务,使 ...

  6. 使用CXF创建REST WEBSERVICE

    简单小结下CXF跟REST搭配webservice的做法,直接举代码为样例: 1 order.java   package com.example.rest; import javax.xml.bin ...

  7. Struts2中指定的校验文件不起作用的原因

    转载请注意出处:http://blog.csdn.net/bettarwang/article/details/39801733 我们知道,假设要为某个Action指定校验文件.那么就要将" ...

  8. 【C#遗补】之Char.IsDigit和Char.IsNumber的区别

    原文:[C#遗补]之Char.IsDigit和Char.IsNumber的区别 Char中IsDigit和IsNumber的两个方法都是用来判断字符是否是数字的,那他们有什么区别 IsDigit    ...

  9. xml(3)--dom4j实现crud操作

    1.XML解析技术概述 (1)XML解析方式分为两种:dom和sax     dom:(Document Object Model, 即文档对象模型) 是 W3C 组织推荐的处理 XML 的一种标准方 ...

  10. linux下golang

    linux下golang的配置 linux下golang的配置 之前开发golang一直在windows下,今天在linux下试了一下 ,遇到一些梗,比如go 找不到 sync包.花了一小时全部解决, ...