Win10下yolov8 tensorrt模型加速部署【实战】

TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10、linux,在2023年已经更新模型:YOLOv8, YOLOv7, YOLOv6, YOLOv5, YOLOv4, YOLOv3, YOLOX, YOLOR,pphumanseg,u2net,EfficientDet。

关注仓库《TensorRT-Alpha》:https://github.com/FeiYull/TensorRT-Alpha

一、加速结果展示

1.1 性能速览

快速看看yolov8n 在移动端RTX2070m(8G)的新能表现:

model video resolution model input size GPU Memory-Usage GPU-Util
yolov8n 1920x1080 8x3x640x640 1093MiB/7982MiB 14%

下图是yolov8n的运行时间开销,单位是ms:

更多TensorRT-Alpha测试录像在B站视频:

B站:YOLOv8n

B站:YOLOv8s

1.2精度对齐

下面是左边是python框架推理结果,右边是TensorRT-Alpha推理结果。

yolov8n : Offical( left ) vs Ours( right )

yolov7-tiny : Offical( left ) vs Ours( right )

yolov6s : Offical( left ) vs Ours( right )

yolov5s : Offical( left ) vs Ours( right )

YOLOv4 YOLOv3 YOLOR YOLOX略。

二、Windows10环境配置

三步解决win环境配置

  • 1、安装vs2019、Nvidia驱动、cuda,cudnn、opencv、tensorrt;
  • 2、创建属性表;
  • 3、工程设置,运行;

    问题:为什么使用vs2019属性表,而不用cmake?

    回答:因为属性表可以做到:一次创建,到处使用。

    提示:如果您一定需要使用cmake+vs2019 or cmake + clion,请参考附录,这是一位热心观众的方法,供参考。

2.1 安装VS2019

需要Microsoft账号,如果您有别的途径下载安装也可以。

- 重启系统

2.2 安装库

注:Nvidia相关网站需要注册账号。

2.2.1 安装Nvidia显卡驱动

  • 选择:[搜索]->[下载] ->[双击默认安装] -> [重启系统] -> [进入cmd],输入如下指令:
nvidia-smi

看到如下信息表明驱动正常:

2.2.2 安装 cuda11.2

nvcc -V

CMD窗口打印如下信息表示cuda11.2安装正常

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:15:10_Pacific_Standard_Time_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0

note:cuda11.2 不需要手动设置环境变量,如下图,环境变量都是自动设置的。

2.2.3 安装 cudnn8.2.1

  • 进入网站:https://developer.nvidia.com/rdp/cudnn-archive
  • 选择: Download cuDNN v8.2.1 (June 7th, 2021), for CUDA 11.x
  • 选择: cuDNN Library for Windows (x86)
  • 你将会下载这个压缩包: "cudnn-11.3-windows-x64-v8.2.1.32_2.zip"
  • 解压之后,cudnn的头文件、库文件都要拷贝到cuda安装目录。
  • 如下图,进入cudnn解压所在文件夹中include,拷贝所有头文件,粘贴到CUDA/v11.2/include中
  • lib、bin中的文件也拷贝到对应cuda目录中
  • 重启系统

2.2.4 下载 tensorrt8.4.2.4

  • 进入网站: https://developer.nvidia.cn/nvidia-tensorrt-8x-download
  • 把这个打勾: I Agree To the Terms of the NVIDIA TensorRT License Agreement
  • 选择: TensorRT 8.4 GA Update 1
  • 选择: TensorRT 8.4 GA Update 1 for Windows 10 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6 and 11.7 ZIP Package
  • 你将会下载这个压缩包: "TensorRT-8.4.2.4.Windows10.x86_64.cuda-11.6.cudnn8.4.zip"
  • 解压到F:\ThirdParty,并重命名为:TensorRT-8.4.2.4
  • 并将路径"F:\ThirdParty\TensorRT-8.4.2.4\lib"添加到环境变量,如下图:
  • 重启系统

2.2.5 OpenCV4.5.5安装

  • 进入:https://opencv.org/releases/
  • 选择:[OpenCV – 4.5.5] -> [Windows]
  • 下载完成之后,是一个exe的自解压格式,解压到:D:\ThirdParty
  • 并将路径:"D:\ThirdParty\opencv4.5.5\build\bin" 和 "D:\ThirdParty\opencv4.5.5\build\x64\vc15\bin"添加到环境变量,如下图:
  • 重启系统

    note:我的opencv在D盘,tensorrt在E盘,根据实际情况修改就行了。

2.3 创建属性表

一般地,Visual Studio 2019,一个库对应两个属性表文件,分别对应:vs2019的debug模式和release模式,例如:本文中OpenCV创建了这两种。而TensorRT和CUDA只需要创建一种属性表(适用以上两种模式)。

2.3.1 创建OpenCV属性表

创建opencv库debug属性表:

  • step1:基于VS2019随便新建一个C++项目,如下图,项目设置为Debug、X64模式

  • step2:如下图,选择:[属性窗口] -> [右击Debug|x64] -> [添加新项目属性表]

  • step3:文件命名为:OpenCV4.5.5_DebugX64.props -> [添加]
  • 编辑属性表:[如下图:双击属性表]

  • step4:如下图,选择:[通用属性] -> [VC++目录] -> [包含目录] -> [编辑]

  • step5:如下图,将两个OpenCV两个头文件目录拷贝进去 -> [确认]

  • step6:选择:[通用属性] -> [VC++目录] -> [库目录] -> [编辑] -> 将路径:"D:\ThirdParty\opencv4.5.5\build\x64\vc15\lib"拷贝进去 -> [确认]
  • step7:选择:[通用属性] -> [链接器] -> [输入] -> [附加依赖项] -> 将文件名"opencv_world455d.lib"拷贝进去->[确认]

    小结

    到这里,opencv库debug属性表制作完成,release属性表和上述流程一样,唯一区别在于,如下图,项目切换到Release x64模式,新建OpenCV4.5.5_ReleaseX64属性表,然后在step7中,将文件名修改为:"opencv_world455.lib"

请记住,制作属性表就3个步骤:

  • 拷贝include路径
  • 拷贝lib路径,外加设置dll到系统环境变量
  • 拷贝lib文件名称

2.3.2 创建TensorRT属性表

右击Debug|x64 or 右击Release|x64新建属性表,重命名为:TensorRT8.4.2.4_X64,

# include路径
F:\ThirdParty\TensorRT-8.4.2.4\include
F:\ThirdParty\TensorRT-8.4.2.4\samples\common
F:\ThirdParty\TensorRT-8.4.2.4\samples\common\windows
# lib路径
F:\ThirdParty\TensorRT-8.4.2.4\lib
# lib文件名称(for release& debug)
nvinfer.lib
nvinfer_plugin.lib
nvonnxparser.lib
nvparsers.lib

依照上一节3个步骤:

  • step1:选择:[通用属性] -> [VC++目录] -> [包含目录] -> [编辑] -> 把上述3个include路径拷贝进去
  • step2:选择:[通用属性] -> [VC++目录] -> [库目录] -> [编辑] -> 把上述lib路径拷贝进去
  • step3:选择:[通用属性] -> [链接器] -> [输入] -> [附加依赖项] -> [编辑] -> 将上述lib文件名称拷贝进去->[确认]

    最后,修改tensorrt属性表:[通用属性] -> [C/C++] -> [预处理器] -> [预处理器定义] -> 添加指令:_CRT_SECURE_NO_WARNINGS -> [确认]

2.3.3 创建CUDA属性表

CUDA属性表直接白嫖官方,在路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\visual_studio_integration\MSBuildExtensions\CUDA 11.2.props

最后,我们应该有了如下属性表文件:

其中,cuda 和tensorrt的属性表同时兼容release x64 和debug x64,你再新建TensorRT-Alpha中yolov8 yolov7 yolov6 等项目后,只需要把上述提前做好的属性表引入到工程就行了,**当然项目还需要进行简单设置**(设置NVCC,避免tensorrt的坑),在后文提到。属性表做到了一次新建,到处使用。

三、YOLOv8模型部署

Windows10环境安装YOLOv8,参考我的另一篇《Win10环境下yolov8快速配置与测试》:https://blog.csdn.net/m0_72734364/article/details/128815530

3.1 获取YOLOv8onnx文件

直接在网盘下载 weiyun or google driver 或者使用如下命令导出onnx:

#  yolov8 官方仓库: https://github.com/ultralytics/ultralytics
# yolov8 官方教程: https://docs.ultralytics.com/quickstart/
# TensorRT-Alpha will be updated synchronously as soon as possible! # 安装 yolov8
conda create -n yolov8 python==3.8 -y
conda activate yolov8
pip install ultralytics==8.0.5
pip install onnx # 下载官方权重(".pt" file)
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x6.pt

导出 onnx:

# 640
yolo mode=export model=yolov8n.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8s.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8m.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8l.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8x.pt format=onnx dynamic=True #simplify=True
# 1280
yolo mode=export model=yolov8x6.pt format=onnx dynamic=True #simplify=True

3.2 编译 onnx

# trtexec.exe在路径:F:\ThirdParty\TensorRT-8.4.2.4\bin
# 640
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8n.onnx --saveEngine=yolov8n.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8s.onnx --saveEngine=yolov8s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8m.onnx --saveEngine=yolov8m.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8l.onnx --saveEngine=yolov8l.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8x.onnx --saveEngine=yolov8x.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
# 1280
../../../../TensorRT-8.4.2.4/bin/trtexec.exe --onnx=yolov8x6.onnx --saveEngine=yolov8x6.trt --buildOnly --minShapes=images:1x3x1280x1280 --optShapes=images:4x3x1280x1280 --maxShapes=images:8x3x1280x1280

你将会的到例如:yolov8n.trt、yolov8s.trt、yolov8m.trt等文件。

3.3 编译运行

3.3.1 新建、设置项目

下载TensorRT-Alpha仓库:

git clone https://github.com/FeiYull/tensorrt-alpha
  • 新建yolov8 C++项目:参考B站视频【提示:从0分34秒开始,演示如何设置NVCC编译,如何避免tensorrt在win环境的坑】:

    yolov8 tensorrt 实战之先导

    小结:

    后续创建TensorRT-Alpha中YOLOv7、 YOLOv6等工程之后,只需要将上文中的属性表添加到工程,然后按照《yolov8 tensorrt 实战之先导》提到的设置工程就OK。

    这篇教程太详细了,这年头,好像很少有人愿意免费给出这么诚意的教程。

3.3.2 编译运行

上面视频在vs2019中设置命令行参数,您也可以在CMD命令行上运行程序,如下:

# 下面参数解释
# --show 表示可视化结果
# --savePath 表示保存,默认保存在build目录
# --savePath=../ 保存在上一级目录 ## 640
# 推理图片
./app_yolov8.exe --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=1 --img=../../data/6406407.jpg --show --savePath
./app_yolov8.exe --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=8 --video=../../data/people.mp4 --show --savePath # 推理视频
./app_yolov8.exe --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=8 --video=../../data/people.mp4 --show --savePath=../ # 在线推理相机视频
./app_yolov8.exe --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=2 --cam_id=0 --show ## 1280
# infer camera
./app_yolov8.exe --model=../../data/yolov8/yolov8x6.trt --size=1280 --batch_size=2 --cam_id=0 --show

我的B站所有视频都在WIN10环境运行,https://space.bilibili.com/2028719613

[video(video-zRQTyZp3-1675415874102)(type-bilibili)(url-https://player.bilibili.com/player.html?aid=778153500)(image-https://img-blog.csdnimg.cn/img_convert/4faa0b726044d139a1282d3883c6ed08.jpeg)(title-yolov8 tensorrt cuda模型推理加速部署TensorRT-Alpha《ski facility》)]

[video(video-Ej2C6hgr-1675415817040)(type-bilibili)(url-https://player.bilibili.com/player.html?aid=650665729)(image-https://img-blog.csdnimg.cn/img_convert/04c8cb5b7ebe3fd410e4af53548a668f.jpeg)(title-yolov8 tensorrt cuda模型推理加速部署TensorRT-Alpha《NewYork-Stree》)]

[video(video-xbOkXTEV-1675415667896)(type-bilibili)(url-https://player.bilibili.com/player.html?aid=565721755)(image-https://img-blog.csdnimg.cn/img_convert/a4469f9c7a048393d4fee5b7bba2893d.jpeg)(title-yolov7 tensorrt cuda模型推理加速部署TensorRT-Alpha《Korea-Night》)]

四、参考

https://github.com/FeiYull/TensorRT-Alpha

附录

一位热心小伙做的,他好努力,前几天经常半夜2点、3点给我留言,太卷了,奋斗精神值得学习。

https://www.bilibili.com/video/BV1SM411i7km/?spm_id_from=333.999.0.0&vd_source=a96c9c3f099f4167807291a34fd50fd5

Win10下yolov8 tensorrt模型加速部署【实战】的更多相关文章

  1. Win10 下 hadoop3.0.0 单机部署

    前言 因近期要做 hadoop 有关的项目,需配置 hadoop 环境,简单起见就准备进行单机部署,方便开发调试.顺便记录下采坑步骤,方便碰到同样问题的朋友们. 安装步骤 一.下载 hadoop-XX ...

  2. win10 下springcloud打包docker镜像部署。

    1:建一个最简单的springcloud应用. 2:在根目录下新建dockerfile,文件如下: FROM openjdk:8-jdk-alpine VOLUME /tmp ARG JAR_FILE ...

  3. LINUX 下.NET Core 微服务部署实战

    前言 最近一直在开发部署.也没有总结一下.从5月份开始出差到现在基本没有发过博客,哎,惭愧. 一直在弄微服务,后续会慢慢更新下面这个系列.欢迎各位大佬交流指点. 分布式理论专题 1..net core ...

  4. 三分钟快速上手TensorFlow 2.0 (下)——模型的部署 、大规模训练、加速

    前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算 ...

  5. Tars | Win10下Docker部署TarsJava(SpringBoot)全过程及踩坑记录

    @ 目录 前言 1. 相关环境版本: 坑点一:VMware与Win10 Docker冲突 坑点二:20.版本TarsJava(SpringBoot)依赖文件缺失 2. Docker安装: 坑点三:Do ...

  6. win10下iis部署asp.net core rtm

    随着ASP.NET Core 1.0 rtm的发布,网上有许多相关.net core 相关文章,今刚好有时间也在win10环境上搭建下 ASP.NET Core的部署环境,把过程记录下给大家. 1. ...

  7. win10 下的 CUDA10.0 +CUDNN + tensorflow + opencv 环境部署

    1 CUDA 10.0 安装  win10 下的cuda 安装是非常简单的,和其他程序安装没什么区别,现在 tensorflow 1.13 版本以上 支持 CUDA 10.0 ,这里选取了CUDA 1 ...

  8. tomcat学习步骤,附带打破双亲委派模型企业应用实战

    1. tomcat入门 入门模块仅做学习大纲梳理,忽略了具体操作指引. Tomcat的三种部署模式: 简单架构模型 连接器的非阻塞模式(NIO) 通道(Channel).缓冲区(Buffer).选择器 ...

  9. Kubernetes 应用部署实战

    Kubernetes 应用部署实战 2018-08-08 19:44:56 wuxiangping2017 阅读数 3084  收藏 更多 分类专栏: linux运维与架构师   简介 伙计们,请搬好 ...

  10. 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型

    昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repos ...

随机推荐

  1. Python基础之模块:5、 第三方模块 requests模块 openpyxl模块

    目录 一.第三方模块的下载与使用 1.什么是第三方模块 2.如何安装第三方模块 方式一:pip工具 方式二:pycharm中下载 3.注意事项 1.报错并有警告信息 2.报错,提示关键字 3.报错,无 ...

  2. Django系列---开发二

    django.contrib.auth Django的用户验证框架,可以快速实现用户信息验证.登录.登出等用户操作 from django.contrib.auth import authentica ...

  3. VS Code插件推荐

    VS Code插件推荐 ​ VS Code作为前端开发人员在学习工作中必不可少的开发软件,其强大的功能以及丰富多样的插件都让开发人员爱不释手.下面推荐个人觉得还不错的几个插件,希望可以帮助到你.如果你 ...

  4. R数据分析:孟德尔随机化实操

    好多同学询问孟德尔随机化的问题,我再来尝试着梳理一遍,希望对大家有所帮助,首先看下图1分钟,盯着看将下图印在脑海中: 上图是工具变量(不知道工具变量请翻之前的文章)的模式图,明确一个点:我们做孟德尔的 ...

  5. EventBridge助力阿里云视觉智能开放平台AI智能存储实践

    本文作者:李建,阿里巴巴达摩院技术专家. 01 视觉智能开放平台(VIAPI)业务场景介绍 阿里云视觉智能开放平台(简称 VIAPI),是基于之前很多技术实践经验积累的 AI 能力的沉淀平台.目前整个 ...

  6. lambda、map、reduce、filter、sorted函数

    # lambda 函数from functools import reducea = lambda x: x ** 2print(a(3))def power(func, l=[]): return ...

  7. python opencv制作隐藏图片

    前言 隐藏图片就是在白色背景和黑色背景显示出不同的图片,之前qq可以显示,现在好像也不行了,原因就是原来的qq,在发出来默认是白色背景,而点开后是黑色背景.但是这个原理还是挺有意思的,所以简单的研究了 ...

  8. Linux创建定时删除日志任务

    定时删除3天前的所有日志文件: 1.例:脚本对应的要删除的目录为/home/logs在home目录创建文件clearLogFiles.sh:cd /homevim clearLogFiles.sh写入 ...

  9. python之xlsx合并单元格

    需求背景: 工作中将数据保存xlsx文件之后,里面每一列中有很多重复的看着很不美观,需要将每一列中的相同值合并起来,是表格看起来美观简洁 处理前 处理后 直接上代码(内涵注释讲解) "&qu ...

  10. node版本管理工具fnm踩坑

    我建议是直接不要用fnm,还是老老实实用nvm吧 fnm下下来电脑防火墙会报毒(用github上推荐的cargo install fnm方式下载,并非第三方安装) Trojan.Generic.HgE ...