Loj 507 接竹竿 题解
Loj链接:接竹竿
$ {\scr \color {SkyBlue}{\text{Solution}}} $
题目大意:
给定一个数组,每次加入一种颜色的数,可以取走与它颜色相同的两个数之间的所有数,问最后取走的所有数中最大和是多少
分析:
第一眼看到的是二分答案,但不知道二分的check()函数怎么写。
没办法,考虑DP(其实是因为我贪心写挂了)
DP如果可以,那么要至少要满足一下几个条件:
- DP前面的选择情况不影响后面的选择情况(前不影响后)
- DP可以转移
时间、空间复杂度等可以以后慢慢优化啦!
尝试一下?
尝试列出转移方程:
$$dp[i]=max \begin{cases} dp[i-1]& \text{$c_i$}!={c_j}\\ dp[j-1] + \sum_{k=1}^{i} v_k - \sum_{k=1}^{j-1} v_k & \text{$c_i==c_j$} \end{cases}$$
这样我们就列出了一个$O(n^3)$的DP转移方程。
接下来就考虑优化呗!
优化
- 前缀和优化
易发现,DP方程里有很多类似求$\sum_{i}^{j} v_k$的,并且每次DP推方程时都要重新计算一遍
其实,求连续一段值的和,我们可以用前缀和优化啊!
现在方程就是$O(n^2)$的了。
示例代码(会TLE!):
for(int i=1;i<=n;i++) scanf("%lld",&a[i].y),a[i].y+=a[i-1].y;
for(int i=1;i<=n;i++)
{
dp[i]=dp[i-1];
for(int j=1;j<i;j++)
if(a[i].x==a[j].x) dp[i]=max(dp[i],dp[j-1]+a[i].y-a[j-1].y);
}
考虑进一步优化
发现转移时,只能找与自己颜色相同的进行转移,所以可以把每一个颜色记录下来,省下循环过程。
这可以用链表或者$ \cal{vector}$ 实现
注意:时间复杂度此时是可以被卡到$O(n^2)$的!因为并没有剩下转移过程,只是省去了枚举无法转移情况的时间。
代码就不放辣QwQ!
再来看看这个转移方程:
$$dp[i]=max \begin{cases} dp[i-1]& \text{$c_i$}!={c_j}\\ dp[j-1] + \sum_{k=1}^{i} v_k - \sum_{k=1}^{j-1} v_k & \text{$c_i==c_j$} \end{cases}$$
我们可以把$\cal{dp[i]}$的初值赋为$\cal{dp[i-1]}$
那就只要考虑这个:
$$dp[i]=max \begin{cases} dp[j-1] + \sum_{k=1}^{i} v_k - \sum_{k=1}^{j-1} v_k & \text{$c_i==c_j$} \end{cases}$$
用前缀和优化后:
$$dp[i]=max \begin{cases} dp[j-1] + summ[i]- summ[j-1] & \text{$c_i==c_j$} \end{cases}$$
我们稍稍改变一下转移方程顺序:
$$dp[i]=max \begin{cases} summ[i]+(dp[j-1] - summ[j-1]) & \text{$c_i==c_j$} \end{cases}$$
换句话说,我们只要求出与$c_i$相等颜色里,$dp[j-1] - summ[j-1] $ 最大值
这个可以用一个数组记下来啊!
那么只要$\cal{O(1)}$,就能完成转移
时间复杂度:$ \cal{O(n)}$
Code:
#include<bits/stdc++.h>
#define L long long
using namespace std;
struct P{
int x;
L y;
}a[1000005];
L dp[1000005],maxx[1000005];
signed main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i].x);
for(int i=1;i<=k;i++) maxx[i]=-1e18;
for(int i=1;i<=n;i++) scanf("%lld",&a[i].y),a[i].y+=a[i-1].y;
for(int i=1;i<=n;i++)
{
dp[i]=max(dp[i-1],maxx[a[i].x]+a[i].y);
maxx[a[i].x]=max(maxx[a[i].x],dp[i-1]-a[i-1].y);
}
printf("%lld",dp[n]);
return 0;
}
Loj 507 接竹竿 题解的更多相关文章
- 洛谷 P4248 / loj 2377 [AHOI2013] 差异 题解【后缀自动机】【树形DP】
可能是一个 SAM 常用技巧?感觉 SAM 的基础题好多啊.. 题目描述 给定一个长度为 \(n\) 的字符串 \(S\) ,令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀,求: \[ ...
- 洛谷 P3975 / loj 2102 [TJOI2015] 弦论 题解【后缀自动机】【拓扑排序】
后缀自动机入门. 题目描述 为了提高智商,ZJY 开始学习弦论. 这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为 \(n\) 的字符串,求出它的第 \ ...
- LOJ P10008 家庭作业 题解
每日一题 day45 打卡 Analysis 这道题跟LOJ P10004 一样,但是数据范围不同,不允许O(n²) 的贪心算法通过. 我们可以加一个limit 来判断这个截止期限已经不行了,所以以后 ...
- LOJ P10022 埃及分数 题解
每日一题 day62 打卡 Analysis 这道题一看感觉很像搜索,但是每次枚举x∈(1,10000000)作为分母显然太蠢了. 所以我们要想办法优化代码. 优化一:迭代加深 优化二: 我们确定了搜 ...
- LOJ P10118 打鼹鼠 题解
每日一题 day17 打卡 Analysis 二维树状数组的单点修改和区间查询,和一维的差不多 #include<iostream> #include<cstdio> #inc ...
- LOJ P10117 简单题 题解
每日一题 day15 打卡 Analysis 树状数组 用树状数组来维护每个字符变化的次数,如果是偶数就是0,奇数就是1 #include<iostream> #include<cs ...
- LOJ P10116 清点人数 题解
每日一题 day13 打卡 Analysis 用简单的树状数组维护单点修改和查询就行了 #include<iostream> #include<cstdio> #include ...
- LOJ P10150 括号配对 题解
Analysis 区间dp裸题 初始化有点麻烦 i,j能匹配时要特判 #include<iostream> #include<cstdio> #include<cstri ...
- LOJ P10148 能量项链 题解
Analysis 区间dp裸题,因为是环所以存两次 #include<iostream> #include<cstdio> #include<cstring> #i ...
- LOJ P10147 石子合并 题解
Analysis 区间dp+前缀和 #include<iostream> #include<cstdio> #include<cstring> #include&l ...
随机推荐
- 7.httpie
可以使用curl或httpie测试我们的服务器.Httpie是用Python编写的用户友好的http客户端 安装:pip3 install httpie #get请求示例 输入命令:http ht ...
- Mysql InnoDB Buffer Pool
参考书籍<mysql是怎样运行的> 系列文章目录和关于我 一丶为什么需要Buffer Pool 对于InnoDB存储引擎的表来说,无论是用于存储用户数据的索引,还是各种系统数据,都是以页的 ...
- Web自动化---解决登录页面随机验证码问题
一.抛出问题 在日常的测试工作中,遇到了这样一个登录页面,如下图: 像我们之前做过UI自动化的同学就知道,自动输入账号和密码,这个简单,但是怎么样来识别验证码呢?验证码的形式有多种,有纯数字的,纯字母 ...
- 前后端分离项目(十):实现"改"功能(前后端)
好家伙,本篇介绍如何实现"改" 我们先来看看效果吧 (这可不是假数据哟,这是真数据哟) (忘记录鼠标了,这里是点了一下刷新) First Of All 我们依旧先来理一下思路: ...
- 聊一聊对一个 C# 商业程序的反反调试
一:背景 1.讲故事 前段时间有位朋友在微信上找到我,说他对一个商业的 C# 程序用 WinDbg 附加不上去,每次附加之后那个 C# 程序就自动退出了,问一下到底是怎么回事?是不是哪里搞错了,有经验 ...
- @RequestBody 注解问题
/** * 不管你是get 请求 还是 post 请求 只要你的参数名称叫做abc * 这里的abc 必须和 postman里面的key 一样 * ...
- pinpoint部署
pinpoint是一个分析大型分布式系统的平台,提供解决方案来处理海量跟踪数据,主要面向基于tomcat的Java 应用. pinpoint使用HBASE储存数据. 下面介绍pinpoint部署及应用 ...
- java学习之SpringMVC拦截器开发
0x00前言 springmvc的拦截器类似于Selvet的Filter,但是所属的操作又不一样 Spring MVC 提供了 Interceptor 拦截器机制,用于请求的预处理和后处理,也就是增强 ...
- golang内置包管理工具go mod简明教程
go mod go buildin package manager. go mod是go语言内置的包管理工具,集成在go tool中,安装好go就可以使用. 要求: go version >= ...
- 网络yum源下载
思路一: 按照本地网罗源,然后使用reposync直接将源同步下载到本地 wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/re ...