Loj链接:接竹竿


$ {\scr \color {SkyBlue}{\text{Solution}}} $

题目大意:

给定一个数组,每次加入一种颜色的数,可以取走与它颜色相同的两个数之间的所有数,问最后取走的所有数中最大和是多少

分析:

第一眼看到的是二分答案,但不知道二分的check()函数怎么写。

没办法,考虑DP(其实是因为我贪心写挂了)

DP如果可以,那么要至少要满足一下几个条件:

  1. DP前面的选择情况不影响后面的选择情况(前不影响后)
  2. DP可以转移

时间、空间复杂度等可以以后慢慢优化啦!

尝试一下?

尝试列出转移方程:

$$dp[i]=max \begin{cases} dp[i-1]& \text{$c_i$}!={c_j}\\ dp[j-1] +   \sum_{k=1}^{i} v_k -    \sum_{k=1}^{j-1} v_k  & \text{$c_i==c_j$} \end{cases}$$

这样我们就列出了一个$O(n^3)$的DP转移方程。

接下来就考虑优化呗!

优化

  1. 前缀和优化

易发现,DP方程里有很多类似求$\sum_{i}^{j} v_k$的,并且每次DP推方程时都要重新计算一遍

其实,求连续一段值的和,我们可以用前缀和优化啊!

现在方程就是$O(n^2)$的了。

示例代码(会TLE!):

for(int i=1;i<=n;i++) scanf("%lld",&a[i].y),a[i].y+=a[i-1].y;
for(int i=1;i<=n;i++)
{
dp[i]=dp[i-1];
for(int j=1;j<i;j++)
if(a[i].x==a[j].x) dp[i]=max(dp[i],dp[j-1]+a[i].y-a[j-1].y);
}

考虑进一步优化

发现转移时,只能找与自己颜色相同的进行转移,所以可以把每一个颜色记录下来,省下循环过程。

这可以用链表或者$ \cal{vector}$ 实现

注意:时间复杂度此时是可以被卡到$O(n^2)$的!因为并没有剩下转移过程,只是省去了枚举无法转移情况的时间。

代码就不放辣QwQ!

再来看看这个转移方程:

$$dp[i]=max \begin{cases} dp[i-1]& \text{$c_i$}!={c_j}\\ dp[j-1] +   \sum_{k=1}^{i} v_k -    \sum_{k=1}^{j-1} v_k  & \text{$c_i==c_j$} \end{cases}$$

我们可以把$\cal{dp[i]}$的初值赋为$\cal{dp[i-1]}$

那就只要考虑这个:

$$dp[i]=max \begin{cases}  dp[j-1] +   \sum_{k=1}^{i} v_k -    \sum_{k=1}^{j-1} v_k  & \text{$c_i==c_j$} \end{cases}$$

用前缀和优化后:

$$dp[i]=max \begin{cases}  dp[j-1] +   summ[i]-    summ[j-1]  & \text{$c_i==c_j$} \end{cases}$$

我们稍稍改变一下转移方程顺序:

$$dp[i]=max \begin{cases}   summ[i]+(dp[j-1]  -   summ[j-1])  & \text{$c_i==c_j$} \end{cases}$$

换句话说,我们只要求出与$c_i$相等颜色里,$dp[j-1]  -  summ[j-1] $ 最大值

这个可以用一个数组记下来啊!

那么只要$\cal{O(1)}$,就能完成转移

时间复杂度:$ \cal{O(n)}$

Code:

#include<bits/stdc++.h>
#define L long long
using namespace std;
struct P{
int x;
L y;
}a[1000005];
L dp[1000005],maxx[1000005];
signed main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i].x);
for(int i=1;i<=k;i++) maxx[i]=-1e18;
for(int i=1;i<=n;i++) scanf("%lld",&a[i].y),a[i].y+=a[i-1].y;
for(int i=1;i<=n;i++)
{
dp[i]=max(dp[i-1],maxx[a[i].x]+a[i].y);
maxx[a[i].x]=max(maxx[a[i].x],dp[i-1]-a[i-1].y);
}
printf("%lld",dp[n]);
return 0;
}

Loj 507 接竹竿 题解的更多相关文章

  1. 洛谷 P4248 / loj 2377 [AHOI2013] 差异 题解【后缀自动机】【树形DP】

    可能是一个 SAM 常用技巧?感觉 SAM 的基础题好多啊.. 题目描述 给定一个长度为 \(n\) 的字符串 \(S\) ,令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀,求: \[ ...

  2. 洛谷 P3975 / loj 2102 [TJOI2015] 弦论 题解【后缀自动机】【拓扑排序】

    后缀自动机入门. 题目描述 为了提高智商,ZJY 开始学习弦论. 这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为 \(n\) 的字符串,求出它的第 \ ...

  3. LOJ P10008 家庭作业 题解

    每日一题 day45 打卡 Analysis 这道题跟LOJ P10004 一样,但是数据范围不同,不允许O(n²) 的贪心算法通过. 我们可以加一个limit 来判断这个截止期限已经不行了,所以以后 ...

  4. LOJ P10022 埃及分数 题解

    每日一题 day62 打卡 Analysis 这道题一看感觉很像搜索,但是每次枚举x∈(1,10000000)作为分母显然太蠢了. 所以我们要想办法优化代码. 优化一:迭代加深 优化二: 我们确定了搜 ...

  5. LOJ P10118 打鼹鼠 题解

    每日一题 day17 打卡 Analysis 二维树状数组的单点修改和区间查询,和一维的差不多 #include<iostream> #include<cstdio> #inc ...

  6. LOJ P10117 简单题 题解

    每日一题 day15 打卡 Analysis 树状数组 用树状数组来维护每个字符变化的次数,如果是偶数就是0,奇数就是1 #include<iostream> #include<cs ...

  7. LOJ P10116 清点人数 题解

    每日一题 day13 打卡 Analysis 用简单的树状数组维护单点修改和查询就行了 #include<iostream> #include<cstdio> #include ...

  8. LOJ P10150 括号配对 题解

    Analysis 区间dp裸题 初始化有点麻烦 i,j能匹配时要特判 #include<iostream> #include<cstdio> #include<cstri ...

  9. LOJ P10148 能量项链 题解

    Analysis 区间dp裸题,因为是环所以存两次 #include<iostream> #include<cstdio> #include<cstring> #i ...

  10. LOJ P10147 石子合并 题解

    Analysis 区间dp+前缀和 #include<iostream> #include<cstdio> #include<cstring> #include&l ...

随机推荐

  1. 基于vite3+tauri模拟QQ登录切换窗体|Tauri自定义拖拽|最小/大/关闭

    前两天有给大家分享tauri+vue3快速搭建项目.封装桌面端多开窗口.今天继续来分享tauri创建启动窗口.登录窗口切换到主窗口及自定义拖拽区域的一些知识.希望对想要学习或正在学习的小伙伴有些帮助. ...

  2. 某Hi3516EV300摄像头折腾笔记

    最近因工作需要买了某款HI3516DV300开发板,但是价格死贵,于是在国内某著名电商网站上瞎逛,很巧发现一家店铺买摄像头模组,主控HI3516EV300,cmos是IMX335,价格不到200元,然 ...

  3. 【JavaWeb】学习笔记——Tomcat集成

    简介 Tomcat是基于Java的一个开放源代码.运行servlet和JSP Web应用的Web应用软件容器,又称servlet容器 安装 官方网站:https://tomcat.apache.org ...

  4. 第一阶段:linux运维基础·1

    1. 服务器的主要硬件是?以及其作用是? cpu 相当于人体的大脑,负责计算机的运算和控制 内存 解决cpu与硬盘之间速度不匹配的问题 磁盘 永久存放数据的存储器 主板 直接或间接的将所有的设备连接在 ...

  5. 【神经网络】softmax回归

    前言 softmax回归为一种分类模型. 基本原理 由于softmax回归也是一种线性叠加算法,且需要输出离散值. 很自然地想到,可以取值最大的输出为置信输出.更进一步想到,如果有三个人A.B.C分别 ...

  6. 七、docker镜像私有仓库

    在Docker中,当我们执行 docker pull xxx 的时候 ,它实际上是从 hub.docker.com 这个地址去查找,这就是 Docker 公司为我们提供的公共仓库.在工作中,我们不可能 ...

  7. 【lwip】09-IPv4协议&超全源码实现分析

    目录 前言 9.1 IP协议简述 9.2 IP地址分类 9.2.1 私有地址 9.2.2 受限广播地址 9.2.3 直接广播地址 9.2.4 多播地址 9.2.5 环回地址 9.2.6 本地链路地址 ...

  8. Re:从零开始教你使用 Sublime Text

    目录 Re:从零开始教你使用 Sublime Text 0.前言 0-0.关于我为什么要写这篇文章 0-1.关于这篇文章会讲什么 0-2.适用人群 0-4.其他 0-5.无用的统计 1.安装和基础功能 ...

  9. 我的Python基础(二)

    python包含6种内奸的序列:列表.元组.字符串.Unicode字符串.buffer对象和xrange对象 列表和元组的主要区别在于,列表可以修改,元组则不能. 索引: 使用负数索引时,最后一个元素 ...

  10. 19、从键盘输入两个数字n,m,求解n,m的最小公倍数

    /* 从键盘输入两个数字n,m,求解n,m的最小公倍数 */ #include <stdio.h> #include <stdlib.h> void getLowsetComM ...