loj2839
除了 L 神 txdy 我还能说啥呢。(L 神把这题搬模拟赛了。。。)
即把每个 x 换成 ( 或 ),问是否能通过不多于一次区间反转(( 与 ) 交换)后合法。
考虑怎样的括号串是合法的。
假设左括号为 \(a_p=0\),右括号为 \(a_p=1\),标号 \(0\sim n-1\)。
我们设 \(S_r=\sum_{k<r}(-1)^{a_k}\),则一个串合法当且仅当
\]
容易发现只要 \(\{S_k\}\) 不同则不同,我们构造了一个 \(S\) 和括号串的双射。(折线法!)
现在再考虑反转操作。
假设反转 \([l,r)\)。
则
\]
\]
\]
\]
化简代换一下,也即
\]
\]
\]
\]
考虑到直接 dp 可能会计重(合法的 \(l,r\) 不唯一),考虑如何避免计重。
一般来说,避免计重可以通过对条件的贪心化实现,也即对每种方案确定某种最优的 \((l,r)\) 对。
假设 \(l\sim r\) 间最大 \(S\) 为 \(S_{\max}\),容易发现 \(S_{\max}\le2S_l\)。
考虑对 \(S_n\) 分类讨论。
当 \(S_n>0\) 时,假设存在 \(S_p<0\),取 \(S_l=\lceil S_{\max}/2\rceil\) 总是不妨最优(顺带一提,\(2\le S_n\le S_r=S_l+S_n/2\le S_{\max}\le2S_l\));也即 \(2S_l-1\le S_{\max}\le2S_l\)。并且总是取最后一个可能的 \(l\),因此下次枚举到一个 \(S_p=S_l\) 时要查看 \(S_l\sim S_p\) 区间内有无 \(S<0\),倘没有则总是不得转移。可以证明这样的 \(l\) 总是最优且唯一。
区间合法遇到 \(r\) 时,我们总应使区间内最大数在 \(2S_l-1\sim2S_l\) 间,且存在 \(S_p<0\)。
由于可能会有另一个合法的 \(S_{r'}=S_r\) 在当前 \(S_r\) 后,考虑如何避免:考虑强制令到下一次出现 \(S_{r'}=S_r\) 之前有某个 \(S_p=2S_l+1\),或一直到 \(S_n\) 均无另一个 \(S_{r'}=S_r\) 则可行,否则不可行。容易发现不会漏统计情况,也不会计重。
第二类情况的计算可以考虑倒推,记录当前 \(S_r-S_n\) 和目前最大 \(S_r-S_n\),可以 \(O(n^3)\) 预处理。
对于第一类情况,即考虑枚举下次出现 \(S_p=2S_l+1\) 的时间来计算方案数,这个可以倒推预处理。通过预处理从 \(n\) 到 \(p\),保持 \(S_p-S_n\ge0\),当前 \(S_p-S_n\) 为某值的方案数,以及进一步到 \(S_v-S_n\),其间所有 \(S_l-S_n<S_k-S_n<S_p-S_n\),直至开头为某数的方案数,来暴力计算。这是 \(O(n^4)\) 的,并且很难优化。
考虑到这么做复杂度不优,我们略做修改,不枚举 \(r\),而是对区间内最大值容斥,枚举何时出现超过最大值边界的元素,这样此前所有可能的 \(S_r\) 均可以出现,从而无需对 \(r\) 端点去重。特别地,如果到终点均未出现超过边界的元素,这类贡献我们还是用先前第二类预处理的方式计算。
这样会好写一点,并且避免了复杂度不优的问题。
对于 \(S_p\ge0\) 恒成立的情况,我们考虑另写一个 dp 判断。
类似于刚刚的 dp,但是区间内不能出现与 \(S_l\) 相等的数。
考虑设 \(x\) 为最大的满足 \(S_x-S_n<0\) 的数,则取 \(r\) 为最大的满足 \(S_r-S_n=\min\{S_k-S_n|x<k\le n\}\) 即可。
只用计算这样的合法方案数即可,与上面过程是类似的。
只用找一个 \(l\) 满足 \(S_l=S_r-S_n/2\),且 \(S_{\max}\le2S_l\) 即可。显然这样的 \(l\) 越大越好,因此区间内不能有和目前 \(S_l\) 一样大的数,也即所有数均大于 \(S_l\)。
容易发现把前面的 dp 过程中未出现负数的方案也用来计算答案即可。
但是这样会算重,所以观察性质,容易发现某些情况的充要条件是 \(\max\{S_k|x<k\le n\}\ge2S_n\),然后就完了。
这样我们就讨论完了 \(S_n>0\) 的情况。
而 \(S_n<0\) 和 \(S_n>0\) 就差一个全局翻转,翻过来一样做即可。
考虑 \(S_n=0\),这个的合法条件是什么?
如果 \(S_p\ge0\) 恒成立,显然总可行。
否则,我们设 \(x\) 是第一个 \(S_x<0\),\(y\) 是最后一个 \(S_y<0\),则合法等价于
\]
于是同样 dp 即可。
总复杂度容易做到 \(O(n^3)\)。
重新理一遍。
先考虑 \(S_n>0\) 的情况的答案。
由于刚刚的过程过于抽象,我们用 dp 方程来描述这一做法。
对于 \(\texttt x\),我们认为其 \(a_p\) 在过程中既可以为 \(0\),也可以为 \(1\),相当于是做两轮转移。
设 \(f_{m,v}\) 为已考虑前 \(m\) 项,其 \(S_p\ge0\) 均成立,且 \(S_m=v\) 的方案数。
显然有(\(\leftarrow\) 表示 dp 的贡献转移方向,不是赋值)
\]
\]
\]
同样的,设 \(g_{m,v}\) 为已考虑 \(m\sim n\) 项,其 \(S_p-S_n\ge0\) 均成立,且 \(S_m-S_n=v\) 的方案数。
\]
\]
\]
我们类似地维护后缀、后缀最大值的 dp,方法类似。
假设 \(h_{m,L,v,0/1}\) 为已考虑 \(0\sim m\) 项,\(S_l=L\),\(S_m=v\),区间内是否已出现负数。
计算两遍,第一遍要求 \(v\le2L\),第二遍要求 \(v\le2L-2\)。
遇到 \(v>2L\) 或者 \(v>2L-2\) 的元素可以直接计算对答案的贡献,注意特判 \(L=1\)。
然后分类计算贡献即可。dp 不予列出。
\(S_p<0\) 同理。
\(S_p=0\) 的部分,分类左侧小还是右侧小,分别写一遍即可。
虽然但是,L 神 txdy!
代码写了 13k。。。
loj2839的更多相关文章
随机推荐
- 记一次 .NET 某安全生产信息系统 CPU爆高分析
一:背景 1.讲故事 今天是的第四天,头终于不巨疼了,写文章已经没什么问题,赶紧爬起来写. 这个月初有位朋友找到我,说他的程序出现了CPU爆高,让我帮忙看下怎么回事,简单分析了下有两点比较有意思. 这 ...
- PowerDotNet平台化软件架构设计与实现系列(14):平台建设指南
软件开发中常见的几种不同服务模型包括SaaS(软件即服务).LaaS(许可即服务).PaaS(平台即服务).CaaS(容器即服务).IaaS(基础设施即服务)和FaaS(功能即服务). 很多人认为Ia ...
- 百倍加速IO读写!快使用Parquet和Feather格式!⛵
作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 本文地址:https://www.showmeai.tech/artic ...
- 【转载】EXCEL VBA 自定义排序的三种方法
何谓自定义排序,就是按指定的顺序对数据源进行排序呗. 共分享了三种方法: 第1种方法是系统自带的OrderCustom,优点是代码简洁,缺点是自定义序列有字符长度限制(255个). 第2种方法是字 ...
- 分享一个自己封装且一直在维护的依赖.net4.5的http异步组包工具类(支持get,post( 表单 ,json, 包含图片等文件的流提交) ,cookie管理,自动跳转,代理IP,https的支持,高并发的配置等等
1.)Nuget安装: 搜索 ConfigLab.Comp, 安装最新版即可. 2.)组包示例. 2.1)模拟post表单提交并包含普通参数和一个图片文件(基于HttpFileUploadAssist ...
- .NET周报【1月第1期 2023-01-06】
国内文章 [开源]基于.net6+gtksharp实现的Linux下的图形界面串口调试工具 https://www.cnblogs.com/flykai/p/17007554.html 由于公司的上位 ...
- Java运算的精度和溢出问题
double和float的0.1问题 代码如下 public class demo2 { public static void main(String[] args) { float f=0.1f; ...
- 合并JSON文件
下面是一段简单地代码 用来减少工作量合并代码 <!DOCTYPE html> <html lang="en"> <head> <meta ...
- 定时调度插件------Longbow.Tasks
官网地址Longbow.Tasks 使用说明 dll引用 使用NuGet 搜索Longbow.Task可找到相关版本的dll 目前最新的为7.0.0版本,需net6.0+ 如果低版本用户可使用5.2. ...
- Grafana 系列文章(十):为什么应该使用 Loki
️URL: https://grafana.com/blog/2020/09/09/all-the-non-technical-advantages-of-loki-reduce-costs-stre ...