Yolov4网络代码

from collections import OrderedDict
import torch
import torch.nn as nn
from Darknet_53 import darknet53 def conv(in_channels, out_channels, kernel_size, stride=1):
pad = (kernel_size-1)//2 if kernel_size else 0
return nn.Sequential(OrderedDict(
[
("conv", nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=pad)),
("bn", nn.BatchNorm2d(out_channels)),
("relu", nn.LeakyReLU(0.1))
]
))
class SPP(nn.Module):
def __init__(self, pool_sizes=[5, 9, 13]):
super(SPP, self).__init__()
self.maxpools = nn.ModuleList([nn.MaxPool2d(pool_size, 1, pool_size//2) for pool_size in pool_sizes])
def forward(self, x):
features = [maxpool(x) for maxpool in self.maxpools[::-1]]
features = torch.cat(features + [x], dim=1)
return features
class Upsample(nn.Module):
def __init__(self, in_channels, out_channels):
super(Upsample, self).__init__()
self.upsample = nn.Sequential(
conv(in_channels=in_channels, out_channels=out_channels,kernel_size=1),
nn.Upsample(scale_factor=2, mode="nearest")
)
def forward(self, x):
x = self.upsample(x)
return x
def conv_three(channels_list, in_channels):
m = nn.Sequential(
conv(in_channels=in_channels, out_channels=channels_list[0], kernel_size=1),
conv(in_channels=channels_list[0], out_channels=channels_list[1], kernel_size=3),
conv(in_channels=channels_list[1], out_channels=channels_list[0], kernel_size=1)
)
return m
def conv_five(channels_list, in_channels):
m = nn.Sequential(
conv(in_channels=in_channels, out_channels=channels_list[0], kernel_size=1),
conv(in_channels=channels_list[0], out_channels=channels_list[1], kernel_size=3),
conv(in_channels=channels_list[1], out_channels=channels_list[0], kernel_size=1),
conv(in_channels=channels_list[0], out_channels=channels_list[1], kernel_size=3),
conv(in_channels=channels_list[1], out_channels=channels_list[0], kernel_size=1)
)
return m
def Yolov4_head(channels_list, in_channels):
m = nn.Sequential(
conv(in_channels=in_channels, out_channels=channels_list[0], kernel_size=3),
conv(in_channels=channels_list[0], out_channels=channels_list[1], kernel_size=1)
)
return m
class YoloBody(nn.Module):
def __init__(self, anchors_mask, num_classes, pretrained = False):
super(YoloBody, self).__init__()
self.backbone = darknet53(pretrained) self.conv1=conv_three(channels_list=[512, 1024], in_channels=1024)
self.spp = SPP()
self.conv2=conv_three(channels_list=[512, 1024], in_channels=2048) self.upsample1 = Upsample(512, 256)
self.conv_for_p4 = conv(in_channels=512, out_channels=256, kernel_size=1)
self.make_five_conv1=conv_five(channels_list=[256, 512], in_channels=512) self.upsample2 = Upsample(in_channels=256, out_channels=128)
self.conv_for_p3=conv(in_channels=256, out_channels=128, kernel_size=1)
self.make_five_conv2=conv_five(channels_list=[128, 256], in_channels=256) # 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
self.yolo_head3=Yolov4_head(channels_list= [256, len(anchors_mask[0]) * (5 + num_classes)], in_channels=128) self.down_sample1 = conv(in_channels=128, out_channels=256, kernel_size=3, stride=2)
self.make_five_conv3 = conv_five(channels_list=[256, 512], in_channels=512) # 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
self.yolo_head2 = Yolov4_head(channels_list=[512, len(anchors_mask[1]) * (5 + num_classes)], in_channels=256) self.down_sample2 = conv(in_channels=256, out_channels=512, kernel_size=3, stride=2)
self.make_five_conv4 = conv_five(channels_list=[512, 1024], in_channels=1024) # 3*(5+num_classes)=3*(5+20)=3*(4+1+20)=75
self.yolo_head1 = Yolov4_head(channels_list=[1024, len(anchors_mask[2]) * (5 + num_classes)], in_channels=512) def forward(self, x):
x2, x1, x0 = self.backbone(x) # 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,2048
p5 = self.conv1(x0)
p5 = self.spp(p5)
# 13,13,2048 -> 13,13,512 -> 13,13,1024 -> 13,13,512
p5 = self.conv2(p5) # 13,13,512 -> 13,13,256 -> 26,26,256
p5_upsample = self.upsample1(p5)
# 26,26,512 -> 26,26,256
p4 = self.conv_for_p4(x1)
# 26,26,256 + 26,26,256 -> 26,26,512
p4 = torch.cat([p4, p5_upsample], axis=1)
# 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256
p4 = self.make_five_conv1(p4) # 26,26,256 -> 26,26,128 -> 52,52,128
p4_upsample = self.upsample2(p4)
# 52,52,256 -> 52,52,128
p3 = self.conv_for_p3(x2)
p3=torch.cat([p3, p4_upsample], axis=1)
p3=self.make_five_conv2(p3) p3_downsample=self.down_sample1(p3)
p4=torch.cat([p3_downsample, p4], axis=1)
p4=self.make_five_conv3(p4) p4_downsample=self.down_sample2(p4)
p5=torch.cat([p4_downsample, p5], axis=1)
p5=self.make_five_conv4(p5) out2=self.yolo_head3(p3)
out1=self.yolo_head2(p4)
out0=self.yolo_head1(p5) return out0, out1, out2 # from torchsummary import summary
# yoloyolo=YoloBody(anchors_mask=["0","0","0"], num_classes=5, pretrained = False)
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# summary(yoloyolo, input_size=(3, 416, 416))
# print(yoloyolo)

代码没有注释,欢迎留言共同讨论,顺便给个关注,感谢。

YOLOV4网络的更多相关文章

  1. YOLOv3和YOLOv4长篇核心综述(上)

    YOLOv3和YOLOv4长篇核心综述(上) 对目标检测算法会经常使用和关注,比如Yolov3.Yolov4算法. 实际项目进行目标检测任务,比如人脸识别.多目标追踪.REID.客流统计等项目.因此目 ...

  2. Yolov3&Yolov4网络结构与源码分析

    Yolov3&Yolov4网络结构与源码分析 从2018年Yolov3年提出的两年后,在原作者声名放弃更新Yolo算法后,俄罗斯的Alexey大神扛起了Yolov4的大旗. 文章目录 1. 论 ...

  3. [炼丹术]YOLOv5目标检测学习总结

    Yolov5目标检测训练模型学习总结 一.YOLOv5介绍 YOLOv5是一系列在 COCO 数据集上预训练的对象检测架构和模型,代表Ultralytics 对未来视觉 AI 方法的开源研究,结合了在 ...

  4. 万字长文详解 YOLOv1-v5 系列模型

    一,YOLOv1 Abstract 1. Introduction 2. Unified Detectron 2.1. Network Design 2.2 Training 2.4. Inferen ...

  5. 【论文笔记】YOLOv4: Optimal Speed and Accuracy of Object Detection

    论文地址:https://arxiv.org/abs/2004.10934v1 github地址:https://github.com/AlexeyAB/darknet 摘要: 有很多特征可以提高卷积 ...

  6. YOLOV4源码详解

    一. 整体架构 整体架构和YOLO-V3相同(感谢知乎大神@江大白),创新点如下: 输入端 --> Mosaic数据增强.cmBN.SAT自对抗训练: BackBone --> CSPDa ...

  7. 深度剖析目标检测算法YOLOV4

    深度剖析目标检测算法YOLOV4 目录 简述 yolo 的发展历程 介绍 yolov3 算法原理 介绍 yolov4 算法原理(相比于 yolov3,有哪些改进点) YOLOV4 源代码日志解读 yo ...

  8. 网络可视化工具netron详细安装流程

    1.netron 简介 在实际的项目中,经过会遇到各种网络模型,需要我们快速去了解网络结构.如果单纯的去看模型文件,脑海中很难直观的浮现网络的架构. 这时,就可以使用netron可视化工具,可以清晰的 ...

  9. YOLOv4

    @ 目录 YOLO v4源码 CMake安装 CUDA安装 cuDNN安装 OpenCV安装 Cmake编译 VS编译 图像测试 测试结果 YOLOv4是最近开源的一个又快又准确的目标检测器. 首先看 ...

  10. YOLOv4全文阅读(全文中文翻译)

    YOLOv4全文阅读(全文中文翻译) YOLOv4: Optimal Speed and Accuracy of Object Detection 论文链接: https://arxiv.org/pd ...

随机推荐

  1. 如何在Ubuntu 20.04上安装和保护phpMyAdmin

    转载csdn:cukw6666 https://blog.csdn.net/cukw6666/article/details/107985170

  2. 如何将 Autofac 整合进 Net6.0 Core MVC 项目中

    一.前言 1.前言 Asp.Net Core Mvc,我也用了很长一段时间了,它现在的编程模型和方式还是特别棒的,都是组件开发,什么都可以替换,当然了,您别抬杠,有些还是不能替换的.自从我们进入了跨平 ...

  3. PG统计信息和系统表

    一.PG统计信息概述 pg的统计信息主要分为两种: 第一类统计信息是是负载指标"统计信息"(Monitoring stats),通过stat collector进程进行实时采集更新 ...

  4. java-tocsv

    1.依赖 <dependencies> <dependency> <groupId>org.apache.poi</groupId> <artif ...

  5. git 日常基本使用

    // 将远程仓库下的所有分支拉取到本地 git fetch origin // 将dev分支合并到当前所在的分支 git merge dev // 基于当前分支克隆出新的本地分支 git checko ...

  6. android webview与js简单的交互方案

    最近研究webview与js交互,看了几个开源库实现,感觉不尽如人意,存在主要问题是,耦合较高,使用不够简洁,后来参考Uri设定规则,格局Uri类似协议自定义了类似的js交互协议 比较简洁,自定义协议 ...

  7. mysql 服务安装与配置

    数据库服务下载与安装: 下载地址:MySQL Community Server 安装:跟随引导一路下一步,建议配置root密码,不然安装成功cmd验证却是要求密码.没有密码还需要执行命令重新设置密码, ...

  8. MyCat2 分表分库

    1.添加数据库.存储数据源 我们在读写分离那边已经生成过,不需要在执行,如果没有执行过,执行下面注解,我们这边重新创建一个数据库db1 /*+ mycat:createDatasource{ &quo ...

  9. CodeGym自学笔记04——什么是编译器?

    编译器 编程语言可以同时被人和编译器所理解.编译器是一个特殊的程序,它可将用编程语言编写的程序转换成一系列的机器代码. 程序员通常用编程语言来编写程序,然后运行编译器,将程序员编写的程序代码文件转换为 ...

  10. Server2008通过bat命令自动定时备份MySQL数据库

    第一种方法: 环境: MySQL 安装位置:D:\MySQL 论坛数据库名称为:Db_Test 数据库备份目的地:D:\db_bak\ 1.首先新建一个bat文件 rem ************** ...