核心思想

空间换时间,是一种用于快速减速的多叉树结构,利用字符串的公共前缀来降低时间

优缺点:

优点:查询效率高,减少字符比较

缺点:内存消耗较大

每次都会从头向下一直到字符串结尾

前缀树

1 单个字符串从前到后加到一棵多叉树上

2 每隔字符串都会有自己所在节点的两个属性path和end,path代表经过,end代表这个字符结尾

3 所有的插入操作都是一样的插入方式,有就复用没有就新开辟一条路

4 经过节点path += 1 ;每个字符串结尾 end += 1

5 可以快速查询前缀和完全匹配的数量

画图解释

如图所示 我们插入第一个字符串“abc”,从a开始,没有a就开辟一个a的路把经过的地方都标记path += 1

结果相同方式遍历b和c,最后c结果end +=1

相同的方式插入ab,每次都会从头开始第一个起始点path += 1,a存在a的path += 1,b也存在b的path +=1 ,b是结尾所以b的end +=1

实现

两种方式实现,第一种会用列表来储存,一种会用字典来储存

实现方式都一样,看会一种即可。

第一种

class Trie:

    def __init__(self):
"""
Initialize your data structure here.
"""
self.children = [None] * 26
self.path = 0
self.isEnd = 0 def insert(self, word: str) -> None:
"""
Inserts a word into the trie.
"""
node = self
node.path += 1
for ch in word:
offset = ord(ch) - ord('a')
# node.path += 1
if not node.children[offset]:
node.children[offset] = Trie()
node = node.children[offset]
node.path += 1 node.isEnd += 1 def startsWith(self, prefix: str) :
node = self
for ch in prefix:
offset = ord(ch) - ord('a')
if not node.children[offset]:
return None
node = node.children[offset] return node.path def search(self, prefix: str) :
node = self
for ch in prefix:
offset = ord(ch) - ord('a')
if not node.children[offset]:
return None
node = node.children[offset] return node.isEnd

第二种

class Trie:

    def __init__(self):
"""
Initialize your data structure here.
"""
self.children = dict()
self.path = 0
self.isEnd = 0 def insert(self, word: str) -> None:
"""
Inserts a word into the trie.
"""
node = self
node.path += 1
for ch in word:
offset = ord(ch) - ord('a')
if offset not in node.children:
node.children[offset] = Trie()
node = node.children[offset]
node.path += 1 node.isEnd += 1 def startsWith(self, prefix: str) :
node = self
for ch in prefix:
offset = ord(ch) - ord('a')
if offset not in node.children:
return None
node = node.children[offset] return node.path def search(self, prefix: str) :
node = self
for ch in prefix:
offset = ord(ch) - ord('a')
if offset not in node.children:
return None
node = node.children[offset] return node.isEnd

前缀树(Tire)—Python的更多相关文章

  1. python利用Trie(前缀树)实现搜索引擎中关键字输入提示(学习Hash Trie和Double-array Trie)

    python利用Trie(前缀树)实现搜索引擎中关键字输入提示(学习Hash Trie和Double-array Trie) 主要包括两部分内容:(1)利用python中的dict实现Trie:(2) ...

  2. 支持中文的基于词为基本粒度的前缀树(prefix trie)python实现

    Trie树,也叫字典树.前缀树.可用于"predictive text"和"autocompletion".亦可用于统计词频(边插入Trie树边更新或加入词频) ...

  3. 【python】Leetcode每日一题-前缀树(Trie)

    [python]Leetcode每日一题-前缀树(Trie) [题目描述] Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的 ...

  4. 【Todo】字符串相关的各种算法,以及用到的各种数据结构,包括前缀树后缀树等各种树

    另开一文分析字符串相关的各种算法,以及用到的各种数据结构,包括前缀树后缀树等各种树. 先来一个汇总, 算法: 本文中提到的字符串匹配算法有:KMP, BM, Horspool, Sunday, BF, ...

  5. Trie(前缀树/字典树)及其应用

    Trie,又经常叫前缀树,字典树等等.它有很多变种,如后缀树,Radix Tree/Trie,PATRICIA tree,以及bitwise版本的crit-bit tree.当然很多名字的意义其实有交 ...

  6. trie树(前缀树)详解——PHP代码实现

    trie树常用于搜索提示.如当输入一个网址,可以自动搜索出可能的选择.当没有完全匹配的搜索结果,可以返回前缀最相似的可能. 一.Tire树的基本性质 根节点不包含字符,除根节点外每一个节点都只包含一个 ...

  7. 4.14——208. 实现 Trie (前缀树)

    前缀树(字典树)是经典的数据结构,以下图所示: 本来处理每个节点的子节点集合需要用到set,但是因为输入规定了只有26个小写字母,可以直接用一个[26]的数组来存储. 关于ASCII代码: Java ...

  8. 【LeetCode】208. Implement Trie (Prefix Tree) 实现 Trie (前缀树)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:Leetcode, 力扣,Trie, 前缀树,字典树,20 ...

  9. HDU1671——前缀树的一点感触

    题目http://acm.hdu.edu.cn/showproblem.php?pid=1671 题目本身不难,一棵前缀树OK,但是前两次提交都没有成功. 第一次Memory Limit Exceed ...

  10. [LeetCode] Implement Trie (Prefix Tree) 实现字典树(前缀树)

    Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs ar ...

随机推荐

  1. PHP全栈开发(八):CSS Ⅵ 列表 style

    列表分为有序列表和无序列表 我们知道有序列表的标签是<ol>意思是order list 无序列表的标签是<ul> 列表里面每项的标签用<li>来进行包裹. 使用CS ...

  2. 【机器学习】利用 Python 进行数据分析的环境配置 Windows(Jupyter,Matplotlib,Pandas)

    环境配置 安装 python 博主使用的版本是 3.10.6 在 Windows 系统上使用 Virtualenv 搭建虚拟环境 安装 Virtualenv 打开 cmd 输入并执行 pip inst ...

  3. CompareTest

    一.说明:Java中的对象,正常情况下,只能进行比较:== 或 != .不能使用 > 或 < 的 但是在开发场景中,我们需要对多个对象进行排序,言外之意,就需要比较对象的大小. 如何实现? ...

  4. FJOI2007轮状病毒 行列式递推详细证明

    题目链接 题目给了你一个奇怪的图,让你求它的生成树个数. 开始写了一个矩阵树: #include<cstdio> #include<cstdlib> #include<c ...

  5. 某Hi3516EV300摄像头折腾笔记

    最近因工作需要买了某款HI3516DV300开发板,但是价格死贵,于是在国内某著名电商网站上瞎逛,很巧发现一家店铺买摄像头模组,主控HI3516EV300,cmos是IMX335,价格不到200元,然 ...

  6. html页面跳转方式

    js里的方法 第一种: window.location.href = XXXX; 第二种: window.setTimeout("javascript:location.href='xxxx ...

  7. Element基本组件

    Element按钮组件: <el-row> <el-button>默认按钮</el-button> <el-button type="primary ...

  8. 检测轮廓 获取其最值的坐标 opencv-python

    一.基础知识 图像清晰度评价算法有多种 空域中,主要考察图像的邻域对比度,即相邻像素间灰度特征的 梯度差: 频域中,主要考察图像的频率分量,清晰的图像高频分量多,模糊的图像低频分量多. 灰度值 把白色 ...

  9. python常用库总结

    图片处理相关 # opencvy pip install opencv-python pip install opencv-contrib-python pip install matplotlib ...

  10. JavaWeb4

    1. Filter 1.1 概述 Filter:过滤器 Servlet.Filter和Listener称为Web的三大组件 生活中的过滤器:净水器.空气净化器.土匪 web中的过滤器:当访问服务器的资 ...