Apache Hudi 流转批 场景实践
背景
在某些业务场景下,我们需要一个标志来衡量hudi数据写入的进度,比如:Flink 实时向 Hudi 表写入数据,然后使用这个 Hudi 表来支持批量计算并通过一个 flag 来评估它的分区数据是否完整从而进一步写入分区数据进行分区级别的ETL,这也就是我们通常说的流转批。
EventTime计算原理

图中Flink Sink包含了两个算子。第一个writer 算子,它负责把数据写入文件,writer在checkpoint触发时,会把自己写入的最大的一个时间传到commit算子中,然后commit算子从多个上游传过来的时间中选取一个最小值作为这一批提交数据的时间,并写入HUDI表的元数据中。
案例使用
我们的方案是将这个进度值(EventTime)存储为 hudi 提交(版本)元数据的属性里,然后通过访问这个元数据属性获取这个进度值。在下游的批处理任务之前加一个监控任务去监控最新快照元数据。如果它的时间已经超过了当前的分区时间,就认为这个表的数据已经完备了,这个监控任务就会成功触发下游的批处理任务进行计算,这样可以防止在异常场景下数据管道或者批处理任务空跑的情况。
下图是一个flink 1分钟级别入库到HUDI ODS表, 然后通过流转批计算写入HUDI DWD表的一个执行过程。

US调度系统轮询逻辑

如何解决乱序到来问题, 我们可以通过设置spedGapTime来设置允许延迟到来的范围默认是0 不会延迟到来。
Maven pom 依赖
针对此功能特性的Hudi依赖版本如下
<dependencies>
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-flink1.13-bundle</artifactId>
<version>0.12.1</version>
</dependency>
</dependencies>
<dependencies>
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-flink1.15-bundle</artifactId>
<version>0.12.1</version>
</dependency>
</dependencies>
如何设置EventTime
能够解析的字段类型及格式如下:
| 类型 | 示例 |
|---|---|
| TIMESTAMP(3) | 2012-12-12T12:12:12 |
| TIMESTAMP(3) | 2012-12-12 12:12:12 |
| DATE | 2012-12-12 |
| BIGINT | 100L |
| INT | 100 |
Flink API
用户只需要设置flink conf指定时间字段作为时间推进字段
Map<String, String> options = new HashMap<>();
// 这里省略其他表字段
options.put(FlinkOptions.EVENT_TIME_FIELD.key(), "ts");
HoodiePipeline.Builder builder = HoodiePipeline.builder(targetTable)
.column("id int not null")
.column("ts string")
.column("dt string")
.pk("id")
.partition("dt")
.options(options);
Flink SQL
通过设置hoodie.payload.event.time.field指定需要计算的eventtime的字段
create table hudi_cow_01(\n" +
" uuid varchar(20),\n" +
" name varchar(10),\n" +
" age int,\n" +
" ts timestamp(3),\n" +
" PRIMARY KEY(uuid) NOT ENFORCED\n" +
")\n" +
" with (\n" +
// 这里省略其他参数
" 'hoodie.payload.event.time.field' = 'ts'\n"
")
如何读取EventTime
Spark SQL
call show_commit_extra_metadata(table => 'hudi_tauth_test.hudi_cow_01', metadata_key => 'hoodie.payload.event.time.field');

Java API
代码获取片段如下
Option<HoodieCommitMetadata> commitMetadataOption = MetadataConversionUtils.getHoodieCommitMetadata(metaClient, currentInstant);
if (!commitMetadataOption.isPresent()) {
throw new HoodieException(String.format("Commit %s not found commitMetadata in Commits %s.", currentInstant, timeline));
}
// 获取到当前版本的时间进度
String eventTime = commitMetadataOption.get().getExtraMetadata().get(FlinkOptions.EVENT_TIME_FIELD.key());
System.out.println("current eventTime: " + eventTime);
输出结果如下
current eventTime: 1667971364742
Apache Hudi 流转批 场景实践的更多相关文章
- KLOOK客路旅行基于Apache Hudi的数据湖实践
1. 业务背景介绍 客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票.一日游.特色体验.当地交通与美食预订服务.覆盖全球100个国家及地区,支持12种语言和41种货 ...
- Apache Hudi典型应用场景知多少?
1.近实时摄取 将数据从外部源如事件日志.数据库提取到Hadoop数据湖 中是一个很常见的问题.在大多数Hadoop部署中,一般使用混合提取工具并以零散的方式解决该问题,尽管这些数据对组织是非常有价值 ...
- Uber基于Apache Hudi构建PB级数据湖实践
1. 引言 从确保准确预计到达时间到预测最佳交通路线,在Uber平台上提供安全.无缝的运输和交付体验需要可靠.高性能的大规模数据存储和分析.2016年,Uber开发了增量处理框架Apache Hudi ...
- 基于Apache Hudi + Flink的亿级数据入湖实践
本次分享分为5个部分介绍Apache Hudi的应用与实践 实时数据落地需求演进 基于Spark+Hudi的实时数据落地应用实践 基于Flink自定义实时数据落地实践 基于Flink+Hudi的应用实 ...
- 触宝科技基于Apache Hudi的流批一体架构实践
1. 前言 当前公司的大数据实时链路如下图,数据源是MySQL数据库,然后通过Binlog Query的方式消费或者直接客户端采集到Kafka,最终通过基于Spark/Flink实现的批流一体计算引擎 ...
- OnZoom 基于Apache Hudi的流批一体架构实践
1. 背景 OnZoom是Zoom新产品,是基于Zoom Meeting的一个独一无二的在线活动平台和市场.作为Zoom统一通信平台的延伸,OnZoom是一个综合性解决方案,为付费的Zoom用户提供创 ...
- 基于Apache Hudi构建数据湖的典型应用场景介绍
1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能 ...
- 字节跳动基于Apache Hudi构建EB级数据湖实践
来自字节跳动的管梓越同学一篇关于Apache Hudi在字节跳动推荐系统中EB级数据量实践的分享. 接下来将分为场景需求.设计选型.功能支持.性能调优.未来展望五部分介绍Hudi在字节跳动推荐系统中的 ...
- 基于 Apache Hudi 极致查询优化的探索实践
摘要:本文主要介绍 Presto 如何更好的利用 Hudi 的数据布局.索引信息来加速点查性能. 本文分享自华为云社区<华为云基于 Apache Hudi 极致查询优化的探索实践!>,作者 ...
- Robinhood基于Apache Hudi的下一代数据湖实践
1. 摘要 Robinhood 的使命是使所有人的金融民主化. Robinhood 内部不同级别的持续数据分析和数据驱动决策是实现这一使命的基础. 我们有各种数据源--OLTP 数据库.事件流和各种第 ...
随机推荐
- Kubernetes_从云原生到kubernetes
一.前言 二.kubernetes和云原生 Cloud Native 直接翻译为云原生,云原生官网:https://www.cncf.io/ CNCF,表示 Cloud Native Computin ...
- C++初阶(list容器+模拟实现)
list介绍 list的本质是一个带头的双向循环链表. 链表是一种物理存储单元上非连续.非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的.链表由一系列结点(链表中每一个元素称为结点 ...
- X活手环的表盘自定义修改
文章用到的所有工具及软件成品 前言 前几天我在某宝买了一个智能手环,无奈软件中的表盘太少,所有我想着修改一下app中的资源文件. 反编译APK 这里反编译APK用apktool工具就可以. apkto ...
- day34 JSTL标签
JSTL标签 <!-- 写在jsp文件的最前 --> <!-- JSTL标签库是一个JSP标签的集合,封装了许多jsp应用程序通用的核心功能 prefix="c" ...
- 【课程复习】Java Web、框架及项目简单回顾
JavaEE Day14 Servlet&HTTP&Request&BeanUtils介绍 Servlet类体系结构,两个子抽象类,需要继承HttpServlet而不是Gene ...
- 踩坑记录:Redis的lettuce连接池不生效
踩坑记录:Redis的lettuce连接池不生效 一.lettuce客户端 lettuce客户端 Lettuce 和 Jedis 的都是连接Redis Server的客户端程序.Jedis在实现上是直 ...
- ChatGPT 可以联网了!浏览器插件下载
Twitter 用户 An Qu 开发了一款新的 Chrome 插件帮助 ChatGPT 上网,安装插件以后 ChatGPT 就可以联!网!了! 简单来说开启插件后,他可以从网上搜索信息,并且根据用户 ...
- 当我们的执行 java -jar xxx.jar 的时候底层到底做了什么?
大家都知道我们常用的 SpringBoot 项目最终在线上运行的时候都是通过启动 java -jar xxx.jar 命令来运行的. 那你有没有想过一个问题,那就是当我们执行 java -jar 命令 ...
- 你不知道的Map家族中的那些冷门容器
概述 本篇文章主要讲解下Map家族中3个相对冷门的容器,分别是WeakHashMap.EnumMap.IdentityHashMap, 想必大家在平时的工作中也很少用到,或者压根不知道他们的特性以及适 ...
- 如何自定义调整bootstrap的模态框大小
背景 项目遇到一个需求,一个大表格放到模态框中,总是会出现撑开的效果,换了文档最大的modal-lg样式还不能解决,原因就是官方不支持更大号的模态框,需要自定义. 经过尝试理解,总结出调整模态框大小通 ...