\(\text{Problem}\)



\(\text{Analysis}\)

显然 \(f=\mu^2\)

那么

\[\begin{aligned}
\sum_{i=1}^n \sum_{j=1}^n (i+j)^k

&= \sum_{d=1}^n \mu^2(d) d^{k+1} \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} (i+j)^k [\gcd(i,j)=1] \\
&= \sum_{d=1}^n \mu^2(d) d^{k+1} \sum_{g=1}^{\lfloor \frac{n}{d} \rfloor} \mu(g) g^k \sum_{i=1}^{\lfloor \frac{n}{dg} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{dg} \rfloor} (i+j)^k \\
\end{aligned}
\]

我们考虑预处理

\[f_1 = \sum_{i=1}^n \mu^2(d) d^{k+1} \\
f_2 = \sum_{i=1}^n \mu(d) d^k \\
f_3 = \sum_{i=1}^n \sum_{j=1}^n (i+j)^k
\]

这样就可以数论分快套数论分快搞定

那么就考虑如何预处理这三个前缀和

显然 \(g(d)=d^k\) 是个积性函数,于是可以线筛处理处所有 \(d^k\)

那 \(f_1\) 和 \(f_2\) 一遍就出来了

现在就看 \(f_3\) 了

我们对 \(f_3\) 差分

\[\begin{aligned}
f_3(n)-f_3(n-1)
&= \sum_{i=1}^n \sum_{j=1}^n (i+j)^k - \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} (i+j)^k \\
&= 2 \sum_{i=1}^n (n+i)^k - (2n)^{k}
\end{aligned}
\]

也就是说我们处理出 \(\sum_{i=1}^{2n} d^k\) 就可以处理出这个 \(f_3\) 的差分数组

然后再做一遍前缀和就可以得到 \(f_3\)

到此本题就结束了

注意空间!!

\(\text{Code}\)

#include<cstdio>
#include<iostream>
#define re register
using namespace std;
typedef long long LL; const int N = 1e7, P = 998244353;
LL k;
int totp, n;
int pr[N], vis[N + 5], mu[N + 5], pk[N + 5], spk[N + 5], f1[N / 2 + 5], f2[N / 2 + 5], f3[N / 2 + 5]; inline int fpow(LL x, LL y)
{
LL res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = res * x % P;
x = x * x % P;
}
return res;
} inline void Euler()
{
vis[1] = mu[1] = pk[1] = 1;
for(re int i = 2; i <= N; i++)
{
if (!vis[i]) pr[++totp] = i, mu[i] = -1, pk[i] = fpow(i, k);
for(re int j = 1; j <= totp && i * pr[j] <= N; j++)
{
vis[i * pr[j]] = 1, pk[i * pr[j]] = (LL)pk[i] * pk[pr[j]] % P;
if (!(i % pr[j])) break;
mu[i * pr[j]] = -mu[i];
}
}
for(re int i = 1; i <= N / 2; i++)
f1[i] = ((LL)f1[i - 1] + (LL)pk[i] * i % P * mu[i] * mu[i]) % P,
f2[i] = ((LL)f2[i - 1] + (LL)pk[i] * mu[i] + P) % P;
for(re int i = 1; i <= N; i++) spk[i] = (pk[i] + spk[i - 1]) % P;
for(re int i = 1; i <= N / 2; i++) f3[i] = ((LL)f3[i - 1] + 2LL * (spk[2 * i] - spk[i] + P) % P - pk[2 * i] % P + P) % P;
} inline int query(int n)
{
LL res = 0;
for(re int l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
res = (res + (LL)(f2[r] - f2[l - 1] + P) % P * f3[n / l] % P) % P;
}
return res;
} int main()
{
scanf("%d%lld", &n, &k);
Euler();
LL ans = 0;
for(re int l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
ans = (ans + (LL)(f1[r] - f1[l - 1] + P) % P * query(n / l)) % P;
}
printf("%lld\n", ans);
}

LG P6156 简单题的更多相关文章

  1. 洛谷 P6222 - 「P6156 简单题」加强版(莫比乌斯反演)

    原版传送门 & 加强版传送门 题意: \(T\) 组数据,求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^n(i+j)^k\mu^2(\gcd(i,j))\g ...

  2. BZOJ 2683: 简单题

    2683: 简单题 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 913  Solved: 379[Submit][Status][Discuss] ...

  3. 【BZOJ-1176&2683】Mokia&简单题 CDQ分治

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1854  Solved: 821[Submit][St ...

  4. Bzoj4066 简单题

    Time Limit: 50 Sec  Memory Limit: 20 MBSubmit: 2185  Solved: 581 Description 你有一个N*N的棋盘,每个格子内有一个整数,初 ...

  5. Bzoj2683 简单题

    Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 1071  Solved: 428 Description 你有一个N*N的棋盘,每个格子内有一个整数, ...

  6. 这样leetcode简单题都更完了

    这样leetcode简单题都更完了,作为水题王的我开始要更新leetcode中等题和难题了,有些挖了很久的坑也将在在这个阶段一一揭晓,接下来的算法性更强,我就要开始分专题更新题目,而不是再以我的A题顺 ...

  7. [BZOJ2683][BZOJ4066]简单题

    [BZOJ2683][BZOJ4066]简单题 试题描述 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作: 命令 参数限制 内容 1 x y A 1<=x ...

  8. HDU 1753 大明A+B(字符串模拟,简单题)

    简单题,但要考虑一些细节: 前导0不要,后导0不要,小数长度不一样时,有进位时,逆置处理输出 然后处理起来就比较麻烦了. 题目链接 我的代码纯模拟,把小数点前后分开来处理,写的很繁杂,纯当纪念——可怜 ...

  9. 团体程序设计天梯赛-练习集L1-014. 简单题

    L1-014. 简单题 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 这次真的没骗你 —— 这道超级简单的题目没有任何输入. ...

  10. bzoj 4066: 简单题 kd-tree

    4066: 简单题 Time Limit: 50 Sec  Memory Limit: 20 MBSubmit: 234  Solved: 82[Submit][Status][Discuss] De ...

随机推荐

  1. 在Linux配置git

    生成ssh ssh-keygen -t rsa 可以不设置密码,一路回车就行,会在 ~/.ssh/下生成两个ssh key: ssh-add ~/.ssh/id_rsa.pub 这一步是使用刚才生成那 ...

  2. VBA驱动SAP GUI自动化:查找页面元素FindAllByName

    我们在VBA中嵌入SAP原生的[脚本录制与回放]功能生成的VBS脚本,可以实现很多自动化操作.但只有我们对SAP做了一系列动作,才会得到这些动作的脚本.然而,一旦我们需要用代码提前做一些判断,然后再决 ...

  3. Excel2010工作簿被锁定,无法复制或者新增加sheet表格。

    Sub 工作簿密码破解() ActiveWorkbook.Sheets.Copy For Each sh In ActiveWorkbook.Sheets sh.Visible = True Next ...

  4. 【Java SE】Day07 API、Scanner类、Random类、ArrayList类

    一.API 1.概述: API(Application Programming Interface),应用程序编程接口 Java API:程序员的字典,是类的说明文档 2.使用步骤 帮助文档:JDK_ ...

  5. Java手写一个批量获取数据工具类

    1. 背景 偶尔会在公司的项目里看到这样的代码 List<Info> infoList = new ArrayList<Info>(); if (infoidList.size ...

  6. 使用 SSH 连接 Git 服务器

    关于 SSH SSH (Secure Shell) 是一种安全的远程登录协议,可以让你通过安全的加密连接进行远程登录.目前,Mac.Windows 10.Linux 系统均有内置 OpenSSH 客户 ...

  7. <二>vector向量容器

    底层数据结构:动态开辟的数组,每次以原始空间2倍扩容 vector vec; 增加 vec.push_back(100);容器末尾加元素 时间负责度O(1) 可能导致容器扩容 容器中的,对象的构造析构 ...

  8. 基于.NetCore开发博客项目 StarBlog - (21) 开始开发RESTFul接口

    前言 最近电脑坏了,开源项目的进度也受到一些影响 这篇酝酿很久了,作为本系列第二部分(API接口开发)的第一篇,得想一个好的开头,想着想着就鸽了好久,索性不扯那么多了,直接开写吧~ 关于RESTFul ...

  9. 解决RockyLinux和Centos Stream 9中firefox无法播放HTML视频问题

    如题在测试两种centos后续系统时,发现firefox无法播放HTML视频问题.经过一番折腾找到了解决的办法,具体解决如下: 首先下载VLC $sudo yum install vlc 而后重启浏览 ...

  10. [编程基础] 常用html标签使用介绍

    常用html标签使用介绍 本文主要记录常用的html标签使用说明,用起来的时候偶尔查查. 常用html标签列表 标签 英文全拼 作用 特点 <html></html> html ...