LG P6156 简单题
\(\text{Problem}\)


\(\text{Analysis}\)
显然 \(f=\mu^2\)
那么
\sum_{i=1}^n \sum_{j=1}^n (i+j)^k
&= \sum_{d=1}^n \mu^2(d) d^{k+1} \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{d} \rfloor} (i+j)^k [\gcd(i,j)=1] \\
&= \sum_{d=1}^n \mu^2(d) d^{k+1} \sum_{g=1}^{\lfloor \frac{n}{d} \rfloor} \mu(g) g^k \sum_{i=1}^{\lfloor \frac{n}{dg} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{dg} \rfloor} (i+j)^k \\
\end{aligned}
\]
我们考虑预处理
f_2 = \sum_{i=1}^n \mu(d) d^k \\
f_3 = \sum_{i=1}^n \sum_{j=1}^n (i+j)^k
\]
这样就可以数论分快套数论分快搞定
那么就考虑如何预处理这三个前缀和
显然 \(g(d)=d^k\) 是个积性函数,于是可以线筛处理处所有 \(d^k\)
那 \(f_1\) 和 \(f_2\) 一遍就出来了
现在就看 \(f_3\) 了
我们对 \(f_3\) 差分
f_3(n)-f_3(n-1)
&= \sum_{i=1}^n \sum_{j=1}^n (i+j)^k - \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} (i+j)^k \\
&= 2 \sum_{i=1}^n (n+i)^k - (2n)^{k}
\end{aligned}
\]
也就是说我们处理出 \(\sum_{i=1}^{2n} d^k\) 就可以处理出这个 \(f_3\) 的差分数组
然后再做一遍前缀和就可以得到 \(f_3\)
到此本题就结束了
注意空间!!
\(\text{Code}\)
#include<cstdio>
#include<iostream>
#define re register
using namespace std;
typedef long long LL;
const int N = 1e7, P = 998244353;
LL k;
int totp, n;
int pr[N], vis[N + 5], mu[N + 5], pk[N + 5], spk[N + 5], f1[N / 2 + 5], f2[N / 2 + 5], f3[N / 2 + 5];
inline int fpow(LL x, LL y)
{
LL res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = res * x % P;
x = x * x % P;
}
return res;
}
inline void Euler()
{
vis[1] = mu[1] = pk[1] = 1;
for(re int i = 2; i <= N; i++)
{
if (!vis[i]) pr[++totp] = i, mu[i] = -1, pk[i] = fpow(i, k);
for(re int j = 1; j <= totp && i * pr[j] <= N; j++)
{
vis[i * pr[j]] = 1, pk[i * pr[j]] = (LL)pk[i] * pk[pr[j]] % P;
if (!(i % pr[j])) break;
mu[i * pr[j]] = -mu[i];
}
}
for(re int i = 1; i <= N / 2; i++)
f1[i] = ((LL)f1[i - 1] + (LL)pk[i] * i % P * mu[i] * mu[i]) % P,
f2[i] = ((LL)f2[i - 1] + (LL)pk[i] * mu[i] + P) % P;
for(re int i = 1; i <= N; i++) spk[i] = (pk[i] + spk[i - 1]) % P;
for(re int i = 1; i <= N / 2; i++) f3[i] = ((LL)f3[i - 1] + 2LL * (spk[2 * i] - spk[i] + P) % P - pk[2 * i] % P + P) % P;
}
inline int query(int n)
{
LL res = 0;
for(re int l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
res = (res + (LL)(f2[r] - f2[l - 1] + P) % P * f3[n / l] % P) % P;
}
return res;
}
int main()
{
scanf("%d%lld", &n, &k);
Euler();
LL ans = 0;
for(re int l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
ans = (ans + (LL)(f1[r] - f1[l - 1] + P) % P * query(n / l)) % P;
}
printf("%lld\n", ans);
}
LG P6156 简单题的更多相关文章
- 洛谷 P6222 - 「P6156 简单题」加强版(莫比乌斯反演)
原版传送门 & 加强版传送门 题意: \(T\) 组数据,求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^n(i+j)^k\mu^2(\gcd(i,j))\g ...
- BZOJ 2683: 简单题
2683: 简单题 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 913 Solved: 379[Submit][Status][Discuss] ...
- 【BZOJ-1176&2683】Mokia&简单题 CDQ分治
1176: [Balkan2007]Mokia Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1854 Solved: 821[Submit][St ...
- Bzoj4066 简单题
Time Limit: 50 Sec Memory Limit: 20 MBSubmit: 2185 Solved: 581 Description 你有一个N*N的棋盘,每个格子内有一个整数,初 ...
- Bzoj2683 简单题
Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 1071 Solved: 428 Description 你有一个N*N的棋盘,每个格子内有一个整数, ...
- 这样leetcode简单题都更完了
这样leetcode简单题都更完了,作为水题王的我开始要更新leetcode中等题和难题了,有些挖了很久的坑也将在在这个阶段一一揭晓,接下来的算法性更强,我就要开始分专题更新题目,而不是再以我的A题顺 ...
- [BZOJ2683][BZOJ4066]简单题
[BZOJ2683][BZOJ4066]简单题 试题描述 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作: 命令 参数限制 内容 1 x y A 1<=x ...
- HDU 1753 大明A+B(字符串模拟,简单题)
简单题,但要考虑一些细节: 前导0不要,后导0不要,小数长度不一样时,有进位时,逆置处理输出 然后处理起来就比较麻烦了. 题目链接 我的代码纯模拟,把小数点前后分开来处理,写的很繁杂,纯当纪念——可怜 ...
- 团体程序设计天梯赛-练习集L1-014. 简单题
L1-014. 简单题 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 这次真的没骗你 —— 这道超级简单的题目没有任何输入. ...
- bzoj 4066: 简单题 kd-tree
4066: 简单题 Time Limit: 50 Sec Memory Limit: 20 MBSubmit: 234 Solved: 82[Submit][Status][Discuss] De ...
随机推荐
- 一张VR图像帧的生命周期
"VR 应用程序每帧渲染两张图像,一张用于左眼,一张用于右眼."人们通常这样来解释 VR 渲染,虽然没有错,但可能过于简单化了.对于 Quest 开发人员来说,了解全貌是有益的,这 ...
- 关于sublime-build的配置详解
前言 sublime-build 可以做很多自定义的构建命令,然后用其执行代码,十分方便! 开始 这里我就简单的用python 的配置来详细说明各个配置项目的作用 { "shell_cmd& ...
- 关于在linux上vm virtualbox读取不到U盘问题的解决
1.设置usb2.0模式 如果你没安装拓展插件的话,调成usb2.0就会出现无效的配置这个提示,并且启动虚拟机会报 Implementation of the USB 2.0 controller n ...
- ArcObjects SDK开发 013 MapFrame
1.如何获取MapFrame 打开一个Mxd文件,可能包含一个或多个Map,每个Map都会放到一个MapFrame中,加载到PageLayout上.我们可以通过PageLayout继承的IGraphi ...
- 基于ZR.VUE 前端的改造,页面刷新报错
问题描述: 前后端分离开发,分开部署. 页面刷新 直接报404 错误的解决办法 提示: 先在 .env.development 中 配置 VUE_APP_BASE_API , 将 '/' 替换为 后 ...
- Django之SQL注入漏洞复现(CVE-2021-35042)
前言 SQL注入的原理是对web请求,表单或域名等提交查询的字符串没有进行安全检测过滤,攻击者可以拼接执行恶意SQL命令,导致用户数据泄露 漏洞原理 Django 组件存在 SQL 注入漏洞,该漏洞是 ...
- Python实验报告(第6章)
实验6:函数 一.实验目的和要求 1.掌握函数的创建和调用: 2.了解不同的参数如何进行传递: 3.了解返回值的应用: 4.学习变量的作用域: 5.学习匿名函数(lambda). 二.实验环境 软件版 ...
- 【进阶篇】Redis实战之Jedis使用技巧详解
一.摘要 在上一篇文章中,我们详细的介绍了 redis 的安装和常见的操作命令,以及可视化工具的介绍. 刚知道服务端的操作知识,还是远远不够的,如果想要真正在项目中得到应用,我们还需要一个 redis ...
- [LeetCode]至少是其他数字两倍的最大数
题目 代码 class Solution { public: int dominantIndex(vector<int>& nums) { vector<int> so ...
- 使用Zolom内存解析运行python脚本(不落地)
在目标机器运行python工具 好多工具都是python写的,如果目标机器是linux的话自带python环境可以很方便的运行这些工具,但是windows下是不自带python环境的,所以一种办法是直 ...