Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.

The
game can be played by two or more than two players. It consists of a
chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a
positive integer or “start” or “end”. The player starts from start-point
and must jumps into end-point finally. In the course of jumping, the
player will visit the chessmen in the path, but everyone must jumps from
one chessman to another absolutely bigger (you can assume start-point
is a minimum and end-point is a maximum.). And all players cannot go
backwards. One jumping can go from a chessman to next, also can go
across many chessmen, and even you can straightly get to end-point from
start-point. Of course you get zero point in this situation. A player is
a winner if and only if he can get a bigger score according to his
jumping solution. Note that your score comes from the sum of value on
the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.

 
Input
Input contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.
 
Output
For each case, print the maximum according to rules, and one line one case.
 
Sample Input
3 1 3 2
4 1 2 3 4
4 3 3 2 1
0
 
Sample Output
4 10 3
 
题目大意 :
  每次从最左端起点处走, 最右端是终点, 并且最左端视为无穷小, 最右端视为无穷大,每次走的下一个点必须比上一个点大,问走过后最大子段和是多少。
因为下一次走它会被上一次所影响,很容易想到dp,则状态转移方程为 dp[i] = max( dp[i], dp[j]+pre[i] ) 0 <= j < i , pre[i] > pre[j]。
 
代码示例 :
  

/*
* Author: renyi
* Created Time: 2017/8/31 13:51:36
* File Name:
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <time.h>
using namespace std;
const int maxn = 1e6+5;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define ll long long ll t_cnt;
void t_st(){t_cnt=clock();}
void t_ot(){printf("you spent : %lldms\n", clock()-t_cnt);}
//开始t_st();
//结束t_ot(); int pre[1050];
int dp[1050]; int main() {
int n ; while (~scanf ("%d", &n) && n){
for (int i = 0; i < n; i++){
scanf ("%d", &pre[i]);
} int ans = 0;
for(int i = 0; i < n; i++){
dp[i] = pre[i];
for(int j = 0; j < i ; j++){
if (pre[i] > pre[j]){
dp[i] = Max(dp[i], dp[j]+pre[i]);
}
}
ans = Max(ans, dp[i]);
}
printf ("%d\n", ans);
} return 0;
}
 

dp-最大递增子段和的更多相关文章

  1. hdu1003 dp(最大子段和)

    题意:给出一列数,求其中的最大子段和以及该子段的开头和结尾位置. 因为刚学过DP没几天,所以还会这题,我开了一个 dp[100002][2],其中 dp[i][0] 记录以 i 为结尾的最大子段的和, ...

  2. hdu1081 DP类最大子段和(二维压缩+前缀和数组/树状数组计数)

    题意:给出一个 n * n 的数字矩阵,问最大子矩阵和是多少. 由于和最长子段和问题类似,一开始想到的就是 DP ,一开始我准备用两个循环进行 DP ,对于每一个 (i,j) ,考察(i - 1,j) ...

  3. Codeforces 1155 D Beautiful Array DP,最大子段和

    题意 给出一个长度为\(n\)的数列和数字\(x\),经过最多一次操作将数列的一个子段的每个元素变为\(a[i]*x\),使该数列的最大子段和最大 分析 将这个数列分为3段考虑,第一段和第三段是未修改 ...

  4. 经典矩阵dp寻找递增最大长度

    竖向寻找矩阵最大递增元素长度,因为要求至少一列为递增数列,那么每行求一下最大值就可以作为len[i]:到i行截止的最长的递增数列长度. C. Alyona and Spreadsheet time l ...

  5. hdu1087 最大递增子段和

    http://acm.split.hdu.edu.cn/showproblem.php?pid=1087 状态方程:sum[j]=max{sum[i]}+a[j]; 其中,0<=i<=j, ...

  6. HDU 1003:Max Sum(DP,连续子段和)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  7. HDU1087 Super Jumping! Jumping! Jumping! 最大连续递增子段

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  8. dp 46(再做一遍)

    Robberies http://acm.hdu.edu.cn/showproblem.php?pid=2955 背包;第一次做的时候把概率当做背包(放大100000倍化为整数):在此范围内最多能抢多 ...

  9. HDU1087:Super Jumping! Jumping! Jumping!(DP)

    Problem Description Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very ...

随机推荐

  1. python基础十四之匿名函数

    匿名函数 处理简单问题的简化函数,关键字lambda. # 格式:函数名 = lambda 参数:返回值 anonymity = lambda s: s ** 0.5 print(anonymity( ...

  2. H3C 环路避免机制五:抑制时间

  3. 【codeforces 762B】USB vs. PS/2

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. zeppelin开启多个

    conf/zeppelin-env.sh 添加行: export ZEPPELIN_PID_DIR=/xx/zeppelin/run_2

  5. HDU 1540 Tunnel Warfare (线段树)

    Tunnel Warfare Problem Description During the War of Resistance Against Japan, tunnel warfare was ca ...

  6. while循环&CPU占用率高问题深入分析与解决方案

    直接上一个工作中碰到的问题,另外一个系统开启多线程调用我这边的接口,然后我这边会开启多线程批量查询第三方接口并且返回给调用方.使用的是两三年前别人遗留下来的方法,放到线上后发现确实是可以正常取到结果, ...

  7. ASP.NET MVC 实现页落网资源分享网站+充值管理+后台管理(7)之扩展基类和区域创建以及文本编辑配置

    一.扩展基类和区域创建 (1)在应用之前,我们先在表现层创建一个公共的系统扩展文件来(SystemExtension)存放我们需要延伸和扩展的方法类. 在常规的项目系统操作中,我们都需要用到增删查改的 ...

  8. C# 通过 probing 指定 dll 寻找文件夹

    在很大的项目开发,会发现项目引用的 dll 会很多,我想要按照不同的功能,将不同的 dll 放在不同的文件夹 简单的方法是通过修改 App.config 文件指定文件夹,如将文件移动到 abc\12 ...

  9. SPOJ - DISUBSTR Distinct Substrings (后缀数组)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  10. CITRIX ADC配置SSL卸载

    如上图,将ssl的加密解密放在前端的负载均衡设备上,客户端到VPX的访问都是加密的,VPX到后端的服务器都是http的 Step1:上传证书到VPX,如下图: Step2:创建SSL的虚拟服务器并且绑 ...