扩展欧几里得原理的应用:POJ1061青蛙的约会
/*
POJ 1061: 青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 123709 Accepted: 26395 Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。 Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible" Sample Input 1 2 3 4 5 Sample Output 4 Source
浙江
*/ import java.util.Scanner; public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long x1 = sc.nextLong();
long y1 = sc.nextLong();
long m = sc.nextLong();
long n = sc.nextLong();
long L = sc.nextLong();
sc.close();
long a = m - n;
long b = L;
long c = y1 - x1;
if (a < 0) {
a = -a;
c = -c;
}
long gcd = extgcd(a, b);
if (c % gcd != 0) {
System.out.println("Impossible");
} else {
c = c / gcd;
b = b / gcd;
x = c * x;
System.out.println((x % b + b) % b);
}
} static long x, y; static long extgcd(long a, long b) {
long d = a;
if (b == 0) {
x = 1;
y = 0;
} else {
d = extgcd(b, a % b);
long t = x;
x = y;
y = t - y * (a / b);
}
return d;
} }
扩展欧几里得原理的应用:POJ1061青蛙的约会的更多相关文章
- Strange Optimization(扩展欧几里得)
Strange Optimization Accepted : 67 Submit : 289 Time Limit : 1000 MS Memory Limit : 65536 KB Str ...
- 【扩展欧几里得】NOIP2012同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- gcd,扩展欧几里得,中国剩余定理
1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题: ...
- URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...
- poj 1061 青蛙的约会 (扩展欧几里得模板)
青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status ...
- 浅谈扩展欧几里得[exgcd] By cellur925
关于扩展欧几里得从寒假时就很迷,抄题解过了同余方程,但是原理并不理解. 今天终于把坑填上了qwq. 由于本人太菜,不会用markdown,所以这篇总结是手写的(什么).(字丑不要嫌弃嘛) ****** ...
- C Looooops(扩展欧几里得+模线性方程)
http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
随机推荐
- 每天一个Linux常用命令 cp命令
Linux cp命令主要用于复制文件或目录 -a:此选项通常在复制目录时使用,它保留链接.文件属性,并复制目录下的所有内容.其作用等于dpR参数组合. -d:复制时保留链接.这里所说的链接相当于Win ...
- 在阅读众多的blog中,我学到了什么
写博客的人,自然会读别人的博客:读博客的人,不一定会写博客.但是这两种人之间的差别是很大的 在最近在一段时间,发现了一个好的博客,通过该博客的友链,发现了新大陆.... 从Jeff Wong开始,到老 ...
- TCP建立连接的三次握手和释放连接的四次挥手
TCP建立连接时,为什么要进行三次握手? 举个打电话的例子: A : 你好我是A,你听得到我在说话吗 B : 听到了,我是B,你听到我在说话吗 A : 嗯,听到了 建立连接,开始聊天! 第一次握手 第 ...
- 有穷自动机(NFA、DFA)&正规文法&正规式之间的相互转化构造方法
在编译原理(第三版清华大学出版社出版)中第三章的词法分析中,3.4.3.5.3.6小节中分别讲解了 1.什么是NFA(不确定的有穷自动机)和DFA(确定的有穷自动机) 2.如何将 不确定的有穷自动机 ...
- 洛谷P1935 [国家集训队]圈地计划
题目大意: 有个\(n*m\)的网格图 每个点可以选择\(A\),获得\(A[i][j]\)或选\(B\)获得\(B[i][j]\)的收益 相邻点有\(k\)个不同可以获得\(C[i][j]\)的收益 ...
- Database - 数据库隔离级别
总结 数据库在并发的情况下,可能会出现: 脏读 不可重复读 --> 原因:UPDATE操作 幻读 --> 原因:INSERT/DELETE操作 为了避免以上问题,数据库事务增加隔离级别,来 ...
- PHP FILTER_SANITIZE_NUMBER_FLOAT 过滤器
定义和用法 FILTER_SANITIZE_NUMBER_FLOAT 过滤器删除浮点数中所有非法的字符. 该过滤器默认允许所有数字以及 + - Name: "number_float&quo ...
- Android中的gen文件为空或者不存在的处理方法
Android中的gen文件时链接程序和XML中资源定义的桥梁,所以如果gen文件夹为空可能有以下的几个原因: 1.XML文件错误,这时可以检查res文件夹中的文件是否有错误 2.导入新的Androi ...
- Python实现中英文翻译方法总结
#Author:Chenglong Qian #Copyright :Chenglong Qian import json import requests import re import os im ...
- elementUI拿到当前表格行的数据的另一种写法
背景: 这里是通过点击“修改”按钮后才拿到当前行的数据,不是点击当前行任意位置拿到数据,所以不能用 @row-click 方法 改用点击的时候直接拿到这个表里面的这一条数据 1.绑定事件 <te ...