题目链接http://acm.hdu.edu.cn/showproblem.php?pid=6631

题意:共\(T\)组数据,每组数据给出\(n\)个点的坐标,这\(n\)个点按顺序给出,相邻的点相连后构成一个简单多边形。询问能否在最多移动一个点的情况下新构成的图形为轴对称图形。

分析:如下图所示,一个轴对称图形的对称轴仅存在两种情况,一是相邻两点的中垂线,二是相隔一点的中垂线。

因此我们只需要对相邻点和相隔一点的点对求中垂线,分别判断是否能够仅移动一个点使得图形成为轴对称图形即可。如下图,多边形\(ABCDX\)可以转变为\(ABCDE\),多边形\(A_1B_1C_1YE_1\)可以转变为\(A_1B_1C_1D_1E_1\)。因此判定能否构成轴对称图形的条件即为轴线两侧的对应点对不关于轴线对称的数量是否\(<2\)。如下图的\(ABCDX\)仅具有一组点对\((X,X)\)不对称。

接下来我们需要解决的问题就是如何快速判定点对关于中垂线对称。如下图,若点对关于轴线对称,则必有两组点对的中点连线与这两组点的连线相互垂直。如下图若点\(N,Q\)关于点\(O,P\)形成的中垂线对称,则应有\(ST\bot NQ\)以及\(TS\bot OP\)(\(T\),\(S\)分别为中点)。

于是我们就得到了一个\(o(n^2)\)的解法,本题就轻松解决了。(大雾)

事实上这样是无法通过的,因为我们忽略了图形有可能自交的情况。如下图样例。

如图,\((D, E)\)点对不构成对称,若将\(D\)点移至\(D_1\)点,则该多边形自交,不再构成简单多边形。因此我们在点对不对称时需要加上特判。特判的方法可由下图观察得到:

我们以对称轴为界将多边形分成两部分。观察不对称的点对(红点),并且将红点与它相邻的两个点看作一个整体,当且仅当这两组点都跨过对称轴时多边形自交(跨过对称轴包括红点落在对称轴上的情况)。

 

AC代码

#include <bits/stdc++.h>
#define SIZE 1007
#define rep(i, a, b) for(int i = a; i <= b; ++i)
using namespace std;
typedef long long ll;
int t, n;
struct Point {
double x, y;
}p[SIZE], a, b, tp, mid, mx, mid2, nullp;
void io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
double cross(Point a, Point b, Point c) { return (b.x - a.x) * (c.y - b.y) - (b.y - a.y) * (c.x - b.x); }
double cdot(Point a, Point b, Point c) { return (b.x - a.x) * (b.x - c.x) + (b.y - c.y) * (b.y - a.y); }
int spjudge(int j, int k, Point mid, Point mid2) {
bool f1 = false, f2 = false; int num = 0;
if (cross(mid, p[j], mid2)) {
int pre = j - 1, post = j + 1;
if (pre < 1) pre += n;
if (post > n) post -= n;
if (cross(mid, p[pre], mid2)*cross(mid, p[post], mid2) < 0) f1 = true;
if (cross(mid, p[pre], mid2)*cross(mid, p[j], mid2) < 0) f1 = true;
if (cross(mid, p[post], mid2)*cross(mid, p[j], mid2) < 0) f1 = true;
}
else f1 = true;
if (cross(mid, p[k], mid2)) {
int pre = k + 1, post = k - 1;
if (pre < 1) pre += n;
if (post > n) post -= n;
if (cross(mid, p[pre], mid2)*cross(mid, p[post], mid2) < 0) f2 = true;
if (cross(mid, p[pre], mid2)*cross(mid, p[j], mid2) < 0) f2 = true;
if (cross(mid, p[post], mid2)*cross(mid, p[j], mid2) < 0) f2 = true;
}
else f2 = true;
if (f1&&f2) return 1;
else return 0;
}
bool judge1() {
rep(i, 1, n) {
int num = 0;
a = p[i]; b = p[i % n + 1];
mid.x = (a.x + b.x) / 2; mid.y = (a.y + b.y) / 2;
mid2.x = mid.x + (a.y - mid.y); mid2.y = mid.y + (mid.x - a.x);
int tt = n / 2 - 1;
if (n % 2) {
tp = p[(i + n / 2) % n + 1];
if (cross(mid, tp, mid2)) ++num;
}
int j = i - 1, k = i + 2;
while (tt--) {
if (j < 1) j += n;
if (k > n) k -= n;
mx.x = (p[j].x + p[k].x) / 2;
mx.y = (p[j].y + p[k].y) / 2;
if ((cdot(p[i], mid, mx) != 0) || (cdot(mid, mx, p[j]) != 0)) {
++num;
num += spjudge(j, k, mid, mid2);
}
--j, ++k;
}
if (num <= 1) return true;
}
return false;
}
bool judge2() {
rep(i, 1, n) {
int num = 0;
a = p[i]; b = p[(i + 1) % n + 1];
mid.x = (a.x + b.x) / 2; mid.y = (a.y + b.y) / 2;
mid2.x = mid.x + (a.y - mid.y); mid2.y = mid.y + (mid.x - a.x);
int tt = n / 2 - 1;
tp = p[i % n + 1];
if (cross(mid, tp, mid2)) ++num;
if (n % 2 == 0) {
tp = p[(i + n / 2) % n + 1];
if (cross(mid, tp, mid2)) ++num;
}
int j = i - 1, k = i + 3;
while (tt--) {
if (j < 1) j += n;
if (k > n) k -= n;
mx.x = (p[j].x + p[k].x) / 2;
mx.y = (p[j].y + p[k].y) / 2;
if ((cdot(p[i], mid, mx) != 0) || (cdot(mid, mx, p[j]) != 0)) {
++num;
num += spjudge(j, k, mid, mid2);
}
--j, ++k;
}
if (num <= 1) return true;
}
return false;
}
int main() {
io(); cin >> t;
while (t--) {
cin >> n;
rep(i, 0, 1000) p[i] = nullp;
rep(i, 1, n) cin >> p[i].x >> p[i].y;
if (n < 5) { cout << "Y\n"; continue; }
if (judge1()) cout << "Y\n";
else if (judge2()) cout << "Y\n";
else cout << "N\n";
}
}

HDU 6631 line symmetric 计算几何的更多相关文章

  1. HDU 6631 line symmetric(枚举)

    首先能想到的是至少有一对相邻点或者中间间隔一个点的点对满足轴对称,那么接下来只需要枚举剩下的点对是否满足至多移动一个点可以满足要求. 第一种情况,对于所有点对都满足要求,那么Yes. 第二种情况,有一 ...

  2. HDU 5130 Signal Interference(计算几何 + 模板)

    HDU 5130 Signal Interference(计算几何 + 模板) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5130 Descripti ...

  3. HDU 3400 Line belt (三分再三分)

    HDU 3400 Line belt (三分再三分) ACM 题目地址:  pid=3400" target="_blank" style="color:rgb ...

  4. HDU 4063 Aircraft(计算几何)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4063 Description You are playing a flying game. In th ...

  5. HDU 5979 Convex【计算几何】 (2016ACM/ICPC亚洲区大连站)

    Convex Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  6. 三分套三分 --- HDU 3400 Line belt

    Line belt Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=3400 Mean: 给出两条平行的线段AB, CD,然后一 ...

  7. HDU 4606 Occupy Cities (计算几何+最短路+最小路径覆盖)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题目:给出n个城市需要去占领,有m条线段是障碍物, ...

  8. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  9. HDU 5839 Special Tetrahedron 计算几何

    Special Tetrahedron 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5839 Description Given n points ...

随机推荐

  1. Java基本语法--运算符

    运算符是一种特殊的符号,用以表示数据的运算.赋值和比较等.本篇博客详细介绍Java基本语法中的运算符,主要包括算术运算符.赋值运算符.比较运算符(关系运算符).逻辑运算符.位运算符.三元运算符. Ja ...

  2. JS的冒泡事件

      在一个对象上触发某类事件(比如单击onclick事件),如果此对象定义了此事件的处理程序,那么此事件就会调用这个处理程序,如果没有定义此事件处理程序或者事件返回true,那么这个事件会向这个对象的 ...

  3. 【Unity|C#】基础篇(3)——类(class)/ 接口(interface)

    [学习资料] <C#图解教程>(第4~7章):https://www.cnblogs.com/moonache/p/7687551.html 电子书下载:https://pan.baidu ...

  4. 《NVM-Express-1_4-2019.06.10-Ratified》学习笔记(8.8)-- Reservations

    8.8 Reservations 预订 NVMe的reservation预订功能,用于让两个或多个主机能够协调配合的访问共享namespace.使用这些功能的协议和方式超出了本规格说明书的范围.对这些 ...

  5. 题解【AcWing178】第K短路

    题面 经典的 \(\text{A*}\) 算法例题. 我们可以把估价函数 \(f(i)\) 设置成当前点 \(i\) 到终点 \(t\) 的最短距离,这可以建反图使用 \(\text{Dijkstra ...

  6. 阿里云负载均衡-note

    公网负载均衡实例 公网类型的负载均衡实例可以通过Internet将客户端请求按照您制定的监听规则分发到添加的后端服务器ECS上. 在您创建公网负载均衡实例后,系统会为其分配一个公网服务地址,您可以将您 ...

  7. layer iframe 设置关闭按钮 和刷新和弹出框设置

    layer弹出层的关闭问题   就是在执行添加或修改的时候,需要将数据提交到后台进行处理,这时候添加成功之后最理想的状态是关闭弹出层并且刷新列表的数据信息,之前一直想实现这样,可一直没有成功,今天决定 ...

  8. centos7添加搜狗输入法

    https://www.cnblogs.com/eeexu123/p/9259430.html https://blog.csdn.net/jpch89/article/details/8190380 ...

  9. 后台异常 - Content is not allowed in prolog

    问题原因 解析XML报的错,XML拼的不对

  10. zookeeper入门之介绍与安装

    一:zookeeper是什么 What is ZooKeeper? ZooKeeper is a centralized service for maintaining configuration i ...