题目链接:https://atcoder.jp/contests/abc128/tasks/abc128_f

题目大意

  给定长度为 N 的序列$s_0, s_1, \dots, s_{N-1}$,现在要选取两个正整数 A 和 B,从$s_0$起跳,按照先往前跳 A 步,再往后跳 B 步的规则正好跳到$s_{N-1}$,每跳到一个地方,其所对应的元素值将会计入你的总分。有如下限制:

  1. 不能跳出序列。
  2. 同一个地方只能被跳到一次。

  请选取适当的 A 和 B,使得得分最大。

分析

  设跳 B 步这个行为进行了 k 次。
  那么$s_{A-B}, s_{2*(A-B)}, \dots, s_{k*(A-B)}$为每次跳 B 步后所能到达的点。
  那么$s_{N-1 - (A-B)}, s_{N-1 - 2*(A-B)}, \dots, s_{N-1 - k*(A-B)}$为每次跳 A 步后所能到达的点。
  可以发现,以上两个序列是一一对应的,唯一变化的只有 A - B 和 k,并且跳 B 步这个行为进行了 k 次可从跳 B 步这个行为进行了 k - 1 次递推而来。
  于是我们可以暴力枚举所有的 A - B 和 k,复杂度大概为$O(N*(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}))$,几乎是线性的。

代码如下

 #include <bits/stdc++.h>
using namespace std; #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} inline int gc(){
static const int BUF = 1e7;
static char buf[BUF], *bg = buf + BUF, *ed = bg; if(bg == ed) fread(bg = buf, , BUF, stdin);
return *bg++;
} inline int ri(){
int x = , f = , c = gc();
for(; c<||c>; f = c=='-'?-:f, c=gc());
for(; c>&&c<; x = x* + c - , c=gc());
return x*f;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef pair< int, int > PII;
typedef pair< string, int > PSI;
typedef set< int > SI;
typedef vector< int > VI;
typedef vector< PII > VPII;
typedef map< int, int > MII;
typedef multimap< int, int > MMII;
typedef unordered_map< int, int > uMII;
typedef pair< LL, LL > PLL;
typedef vector< LL > VL;
typedef vector< VL > VVL;
typedef priority_queue< int > PQIMax;
typedef priority_queue< int, VI, greater< int > > PQIMin;
const double EPS = 1e-;
const LL inf = 0x7fffffff;
const LL infLL = 0x7fffffffffffffffLL;
const LL mod = 1e9 + ;
const int maxN = 1e5 + ;
const LL ONE = ;
const LL evenBits = 0xaaaaaaaaaaaaaaaa;
const LL oddBits = 0x5555555555555555; int N, s[maxN];
LL ans; int main(){
INIT();
cin >> N;
Rep(i, N) cin >> s[i]; For(i, , N - ) { // 枚举 A - B
LL ret = ;
For(k, , (N - ) / i) {
LL tmp = N - - i * k;
if(tmp <= i || tmp % i == && tmp / i <= k) break;
ret += s[i * k] + s[tmp];
ans = max(ans, ret);
}
} cout << ans << endl;
return ;
}

AtCoder ABC 128F Frog Jump的更多相关文章

  1. ATCODER ABC 099

    ATCODER ABC 099 记录一下自己第一场AK的比赛吧...虽然还是被各种踩... 只能说ABC确实是比较容易. A 题目大意 给你一个数(1~1999),让你判断它是不是大于999. Sol ...

  2. Atcoder ABC 141

    Atcoder ABC 141 A - Weather Prediction SB题啊,不讲. #include<iostream> #include<cstdio> #inc ...

  3. Atcoder ABC 139E

    Atcoder ABC 139E 题意: n支球队大循环赛,每支队伍一天只能打一场,求最少几天能打完. 解法: 考虑抽象图论模型,既然一天只能打一场,那么就把每一支球队和它需要交手的球队连边. 求出拓 ...

  4. Atcoder ABC 139D

    Atcoder ABC 139D 解法: 等差数列求和公式,记得开 $ long long $ CODE: #include<iostream> #include<cstdio> ...

  5. Atcoder ABC 139C

    Atcoder ABC 139C 题意: 有 $ n $ 个正方形,选择一个起始位置,使得从这个位置向右的小于等于这个正方形的高度的数量最多. 解法: 简单递推. CODE: #include< ...

  6. Atcoder ABC 139B

    Atcoder ABC 139B 题意: 一开始有1个插口,你的插排有 $ a $ 个插口,你需要 $ b $ 个插口,问你最少需要多少个插排. 解法: 暴力模拟. CODE: #include< ...

  7. Atcoder ABC 139A

    Atcoder ABC 139A 题意: 给你两个字符串,记录对应位置字符相同的个数 $ (n=3) $ 解法: 暴力枚举. CODE: #include<iostream> #inclu ...

  8. atcoder abc 244

    atcoder abc 244 D - swap hats 给定两个 R,G,B 的排列 进行刚好 \(10^{18}\) 次操作,每一次选择两个交换 问最后能否相同 刚好 \(10^{18}\) 次 ...

  9. AtCoder ABC 250 总结

    AtCoder ABC 250 总结 总体 连续若干次一样的结果:30min 切前 4 题,剩下卡在 T5 这几次卡在 T5 都是一次比一次接近, 什么 dp 前缀和打挂,精度被卡,能水过的题连水法都 ...

随机推荐

  1. BZOJ 1927: [Sdoi2010]星际竞速(费用流)

    传送门 解题思路 仿照最小路径覆盖问题,用费用流解决此题.最小路径覆盖问题是拆点连边后用\(n-\)最大匹配,这里的话也是将每个点拆点,源点向入点连流量为\(1\),费用为\(0\)的边,向出点连流量 ...

  2. fatal error C1047: 对象或库文件“.\x64\Release\Des.obj”是使用比创建其他对象所用编译器旧的编译器创建的;请重新生成旧的对象和库

    问题描述: 在把一个32位的dll编译成64位的时候提示上面的错误 解决办法: >属性->常规->项目默认值->全程序优化  将这里的默认项 "使用链接时间代码生成& ...

  3. 通过adb命令查看SN、CID码等信息

      用ADB命令来查看自己手机的相关硬件以及其他的参数信息,相信许多机友已经早已查看过,而新入门感兴趣的机友可以尝试一下. 运用这些ADB命令可以很直观的查看到你手机上的硬件与软件方面的详细信息. 下 ...

  4. inode缓存与dentry缓存

    1. inode缓存 1: struct inode { 2: /* RCU path lookup touches following: */ 3: umode_t i_mode; 4: uid_t ...

  5. 前端(二十二)—— vue组件:局部组件、全局组件、父组件数据传到子组件、子组件数据传到父组件、父子组件实现todoList

    Vue组件 一.组件介绍 每一个组件都是一个vue实例 每个组件均具有自身的模板template,根组件的模板就是挂载点,根组件也可以显式书写模板,会替换掉挂载点 每个组件模板只能拥有一个根标签 子组 ...

  6. python3 递归函数return返回None

    今天写了一个函数,执行之后打印出来的结果是None,不明白,之后百度了一下,这里记一下过程,免得之后再踩坑 #!/usr/bin/python3# -*- coding:utf-8 -*- def b ...

  7. 百度编译器ueditor目录创建失败问题解决

    修改ueditor编辑器的文件Uploader.class.php   例如: vim protected/widget/ueditor/php/Uploader.class.php :283 if( ...

  8. MySQL 到底是怎么解决幻读的?

    ; 原理:将历史数据存一份快照,所以其他事务增加与删除数据,对于当前事务来说是不可见的. 2. next-key 锁 (当前读) next-key 锁包含两部分: 记录锁(行锁) 间隙锁 记录锁是加在 ...

  9. js 正则替换的使用方法

    function compress(source) { const keys = {}; ⇽--- 存储目标key source.replace( /([^=&]+)=([^&]*)/ ...

  10. java并发之同步辅助类CountDownLatch

    CountDownLatch 含义: CountDownLatch可以理解为一个计数器在初始化时设置初始值,当一个线程需要等待某些操作先完成时,需要调用await()方法.这个方法让线程进入休眠状态直 ...