pa[a][j] 表示 a 结点的 2^j倍祖先(j = 0时 为直接父亲,j = 1时为父亲的父亲……)

1.首先预处理出所有结点的深度值dep和父亲结点

 void dfs(int u, int f, int d) {
dep[u] = d;
pa[u][] = f;
for(int i = ; i < G2[u].size(); i++) {
edge& e = E[G2[u][i]];
int v = e.u == u ? e.v : e.u;
if(v != f) {
dfs(v, u, d+);
}
}
}

2.预处理出所有结点的 2^j 倍祖先

 void pre() {
for(int j = ; (<<j) < n; j++)
for(int i = ; i <= n; i++) if(pa[i][j-] != -)
pa[i][j] = pa[pa[i][j-]][j-];
}

3.查询操作,首先将 a,b中深度较大的结点上升到与深度较小的结点同一深度,然后两个结点同步上移,直到上移到最近公共祖先的直接儿子处。

 int lca(int a, int b)//最近公共祖先
{
int i, j;
if(dep[a] < dep[b]) swap(a, b);
for(i = ; (<<i) <= dep[a]; i++);
i--;
//使a,b两点的深度相同
for(j = i; j >= ; j--)
if(dep[a] - (<<j) >= dep[b])
a=pa[a][j];
if(a == b) return a;
//倍增法,每次向上进深度2^j,找到最近公共祖先的子结点
for(j = i; j >= ; j--) {
if(pa[a][j] != - && pa[a][j] != pa[b][j]) {
a = pa[a][j];
b = pa[b][j];
}
}
return pa[a][];
}

LCA (最近公共祖先)倍增做法 —— O(nlogn)预处理 O(logn)(在线)查询的更多相关文章

  1. LCA最近公共祖先---倍增法笔记

    先暂时把模板写出来,A几道题再来补充 此模板也是洛谷上的一道模板题 P3379 [模板]最近公共祖先(LCA) #pragma GCC optimize(2) //o2优化 #include < ...

  2. LCA(最近公共祖先)模板

    Tarjan版本 /* gyt Live up to every day */ #pragma comment(linker,"/STACK:1024000000,1024000000&qu ...

  3. CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )

    CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...

  4. LCA 近期公共祖先 小结

    LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...

  5. lca 最近公共祖先

    http://poj.org/problem?id=1330 #include<cstdio> #include<cstring> #include<algorithm& ...

  6. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  7. LCA近期公共祖先

    LCA近期公共祖先 该分析转之:http://kmplayer.iteye.com/blog/604518 1,并查集+dfs 对整个树进行深度优先遍历.并在遍历的过程中不断地把一些眼下可能查询到的而 ...

  8. lca最近公共祖先与树上倍增。

    https://vjudge.net/contest/295298#problem/A lca 的题目 求任意两点的距离. A题是在线算法,用st表rmq来实现. https://blog.csdn. ...

  9. [总结]最近公共祖先(倍增求LCA)

    目录 一.定义 二.LCA的实现流程 1. 预处理 2. 计算LCA 三.例题 例1:P3379 [模板]最近公共祖先(LCA) 四.树上差分 1. 边差分 2. 点差分 3. 例题 一.定义 给定一 ...

随机推荐

  1. 安装docker报错问题

    安装docker容易出现错误的几种情况: 1.网络问题,无法下载完成的docker容器 2.linux内核版本必须是3.10及以上 3.可以选择使用aliyun的yum源,更好用 4.

  2. Python要如何实现(列表)排序?

    排序,是许多编程语言中经常出现的问题.同样的,在Python中,如何是实现排序呢?(以下排序都是基于列表来实现) 一.使用Python内置函数进行排序 Python中拥有内置函数实现排序,可以直接调用 ...

  3. unity如何查找某个脚本挂在了哪些物体上

    在开发中往往会遇到一个问题:不知道整个场景中究竟有哪些物体挂载了某一个脚本.如果挨个查找太麻烦了,下面有一种方法可以快速找到解决这个问题. 在unity的Window里有一项Editor tests ...

  4. Leetcode706.Design HashMap设计哈希映射

    不使用任何内建的哈希表库设计一个哈希映射 具体地说,你的设计应该包含以下的功能 put(key, value):向哈希映射中插入(键,值)的数值对.如果键对应的值已经存在,更新这个值. get(key ...

  5. 超实用的Java数组技巧攻略分享!

    本文分享了关于Java数组最顶级的11大方法,帮助你解决工作流程问题,无论是运用在团队环境或是在私人项目中,你都可以直接拿来用! 声明一个数组(Declare an array) String[] a ...

  6. 介绍elasticsearch的文件

    elasticsearch.yml文件 打开上边的文件,我们看到下面的"集群"名称,节点名称 下图是文件的存储路径和日志路径 下面是监听的地址,默认是本机 下图指的是,集群是怎样搭 ...

  7. nginx+tomcat集群+redis(memcache)session共享!

    常用保持session的方式: 1.一些代理(比如nginxIP_hash) 1.使用数据库来存储Session 2.使用Cookie来存储Session                       ...

  8. oracle加锁

    锁 insert into TEST values(5); 加row exclusive锁,和row share相同,但也禁止用share方式加锁. Create index idx_test on ...

  9. QT UI 线程为什么卡死?

    我的工程是由三个线程处理不同任务构成的,其中UI用于显示,还有数据处理和数据接收发送线程. 在运行的过程中发现由于数据处理线程不及时,超过了设定的100ms,导致UI卡死,几个周期后又恢复,接着又卡死 ...

  10. SQLServer —— 用户权限操作

    说明 以下操作都是基于SQLServer登陆验证方式登陆.而且操作员都是 sa. 一.添加登陆账号 use master go ' 第一个(xu)是登陆名,第二个(123456)是登陆密码. 执行语句 ...