Chapter 4 图
Chapter 4 图
.
1- 图的存储结构
无向图:对称
有向图:……
2- 图的遍历
1 深度优先搜索(DFS)
类似于二叉树的先序遍历
2 广度优先搜索(BFS)
类似于二叉树的层序遍历
3- 最小(代价)生成树(针对无向图)MST
1 Prim算法 O(|V2|)
只与顶点数有关,与边无关
2 Kruskal算法 O(|E|log|E|)
只与边数有关,与顶点数无关
//什么样的图最小生成树唯一?图中所有权值不相等。
4- 最短路径
1 Dijkstra O(|V2|)
单源最短路径
l 要找出所有节点的最短路径,需要对每一个结点用Dijkstra O(|V3|)
l 边上有负权值,不适用
2 Floyd O(|V3|)
求解任意一对顶点间的最短距离
l 允许带有负权值的边,但不允许有负权值边组成的回路
5- 拓扑排序 O(|V|+|E|)
1 AOV网
以顶点表示活动,以边表示活动的先后次序,且没有回路的有向图
2 对有向无环图的拓扑排序
可能不唯一:如果有多个入度为0的顶点,可任选一个输出
6- 关键路径
1 AOE网
活动在边上的网,与AOV网相比
相同点:都是有向无环图
不同点:AOE网边表示活动、有权值,表示活动持续时间。顶点表示事件,事件是图中新活动开始旧活动结束的标志。
AOV网边表示活动之间的相互关系,无权值,顶点表示活动。
l 只存在一个入度为0的点称为源点
求关键路径的步骤:
1 拓扑排序
2 事件Vk的最早发生时间Ve(k)
V1->Vi max
3 时间Vk的最迟发生时间Vl(k)
从后向前算 min = 后-max
4 活动ai的最早开始时间e(i)
边上首结点的Ve(k)
5 活动ai的最迟开始时间l(i)
边上尾结点的Vl(k)-ai
6 d = l(i) - e(i)
//可以通过加快那些在所有关键路径上的关键活动来缩短工期
//关键路径不唯一
注:
1- 邻接矩阵的空间复杂度O(|V2|)
2- 邻接表—方便找出所有邻边(不唯一)
邻接矩阵—给定的两个顶点是否存在边
3- 十字链表—有向图的链式存储
容易求得顶点的入度和出度
图的十字链表表示不唯一,但一个十字链表可以唯一确定一个图。
4- 邻接多重表是无向图的另一种链式存储结构
5- BFS借助一个辅助队列,空间复杂度是O(|V|)
邻接表O(|V|+|E|),邻接矩阵O(|V2|)
6- DFS借助一个栈,空间复杂度是O(|V|)
邻接表O(|V|+|E|),邻接矩阵O(|V2|)
7- 当各边权值相等时,广度优先算法可以解决单源最短路径问题。
8- Prim O(|V2|)
Kruskal O(|E|log|E|)
Dijkstra O(|V2|)
Floyd O(|V3|)
拓扑 O(|V|+|E|)
9- 最短路径一定是简单路径
10- 可以判断有向图是否有环:深度优先搜索,拓扑排序
Chapter 4 图的更多相关文章
- Chapter 7(图)
1.Prim算法生成最小生成树 //Prim算法生成最小生成树 void MiniSpanTree_Prim(MGraph G) { int min,i,j,k; int adjvex[MAXVEX] ...
- 【译】x86程序员手册13-第5章 内存管理
Chapter 5 Memory Management 内存管理 The 80386 transforms logical addresses (i.e., addresses as viewed b ...
- 《算法导论》习题解答 Chapter 22.1-5(求平方图)
一.邻接矩阵实现 思路:如果是邻接矩阵存储,设邻接矩阵为A,则A*A即为平方图,只需要矩阵相乘即可: 伪代码: for i=1 to n for j=1 to n for k=1 to n resul ...
- 《算法导论》习题解答 Chapter 22.1-3(转置图)
一.邻接表实现 思路:一边遍历,一边倒置边,并添加到新的图中 邻接表实现伪代码: for each u 属于 Vertex for v 属于 Adj[u] Adj1[v].insert(u); 复杂度 ...
- Android Programming: Pushing the Limits -- Chapter 7:Android IPC -- Messenger
Messenger类实际是对Aidl方式的一层封装.本文只是对如何在Service中使用Messenger类实现与客户端的通信进行讲解,对Messenger的底层不做说明.阅读Android Prog ...
- [转]第四章 使用OpenCV探测来至运动的结构——Chapter 4:Exploring Structure from Motion Using OpenCV
仅供参考,还未运行程序,理解部分有误,请参考英文原版. 绿色部分非文章内容,是个人理解. 转载请注明:http://blog.csdn.net/raby_gyl/article/details/174 ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- WITCH CHAPTER 0 [cry] 绝密开发中的史克威尔艾尼克斯的DX12技术演示全貌
西川善司的[WITCH CHAPTER 0 cry]讲座 ~绝密开发中的史克威尔艾尼克斯的DX12技术演示全貌 注:日文原文地址: http://pc.watch.impress.co.jp/d ...
- Chapter 3: Connector(连接器)
一.概述 Tomcat或者称之为Catalina(开发名称),可以简化为两个主要的模块,如下图: 多个Connector关联一个Container.之所以需要多个Connector,是为了处理多种协议 ...
随机推荐
- vsftp 被动模式配置
直接复制粘切过来就能用 这里只讲下配置,安装方法可以直接yum 配置文件修改 anonymous_enable=NO #关闭匿名用户 xferlog_file=/var/log/vsftpd.log ...
- hadoop Datanode多目录配置
1. DataNode也可以配置成多个目录,每个目录存储的数据不一样.即:数据不是副本2.具体配置如下 hdfs-site.xml <property> <name>dfs.d ...
- Could not open file ..\obj\sys.o: No such file or directory解决办法
一.你的keil的安装路径以及系统用户名是否带中文字符以及一些特殊字符.二.环境变量的值存在中文或者特殊字符了,解决方法如下: 1.在C盘建立一个新的文件夹,命名为英文,如qcl2.右击"此 ...
- javascript中onclick(this)用法和onclick(this.value)用法介绍
onclick(this.value)代码详解 <html> <head> <script language="javascript"> fun ...
- DNS 攻击方式及攻击案例
[赛迪网-IT技术报道]2010年1月12日晨7时起,网络上开始陆续出现百度出现无法访问的情况反馈, 12时左右基本恢复正常:18时许百度发布官方版本公告:对事故原因说明为:"因www.ba ...
- System.Web.HttpContext.cs
ylbtech-System.Web.HttpContext.cs 1.程序集 System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken ...
- centos6.4下安装python3.6.1
1.安装编译环境所需包 #yum install zlib-devel bzip2-devel openssl-devel ncurese-devel gcc zlib 安装成功 2.下载源码包 #w ...
- ubuntu 没有桌面 没有图标,只剩下壁纸
sudo apt-get update sudo apt-get install --reinstall ubuntu-desktop sudo apt-get install unity sudo ...
- AtCoder ABC 130E Common Subsequence
题目链接:https://atcoder.jp/contests/abc130/tasks/abc130_e 题目大意 给定一个长度为 N 的序列 S 和一个长度为 M 的序列 T,问 S 和 T 中 ...
- tomcat部署war和war exploded区别和intellij idea部署项目的位置
tomcat部署war和war exploded区别和intellij idea部署项目的位置 来自https://blog.csdn.net/u013041642/article/details/7 ...