莫烦pytorch学习笔记(七)——Optimizer优化器
import torch
import torch.utils.data as Data
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
# 超参数
LR = 0.01
BATCH_SIZE =
EPOCH =
# 生成假数据
# torch.unsqueeze() 的作用是将一维变二维,torch只能处理二维的数据
x = torch.unsqueeze(torch.linspace(-, , ), dim=) # x data (tensor), shape(, )
# 0.2 * torch.rand(x.size())增加噪点
y = x.pow() + 0.1 * torch.normal(torch.zeros(*x.size()))
# 输出数据图
# plt.scatter(x.numpy(), y.numpy())
# plt.show()
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=)
class Net(torch.nn.Module):
# 初始化
def __init__(self):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(, )
self.predict = torch.nn.Linear(, )
# 前向传递
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net_SGD = Net()
net_Momentum = Net()
net_RMSProp = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSProp, net_Adam]
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSProp = torch.optim.RMSprop(net_RMSProp.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSProp, opt_Adam]
loss_func = torch.nn.MSELoss()
loss_his = [[], [], [], []] # 记录损失
for epoch in range(EPOCH):
print(epoch)
for step, (batch_x, batch_y) in enumerate(loader):
b_x = Variable(batch_x)
b_y = Variable(batch_y)
for net, opt,l_his in zip(nets, optimizers, loss_his):
output = net(b_x) # get output for every net
loss = loss_func(output, b_y) # compute loss for every net
opt.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
l_his.append(loss.data.numpy()) # loss recoder
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(loss_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((, 0.2))
plt.show()

莫烦pytorch学习笔记(七)——Optimizer优化器的更多相关文章
- 莫烦 - Pytorch学习笔记 [ 一 ]
1. Numpy VS Torch #相互转换 np_data = torch_data.numpy() torch_data = torch.from_numpy(np_data) #abs dat ...
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- 莫烦PyTorch学习笔记(五)——模型的存取
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...
- [PyTorch 学习笔记] 4.3 优化器
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.py https: ...
- 莫烦PyTorch学习笔记(五)——分类
import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.p ...
- 莫烦PyTorch学习笔记(四)——回归
下面的代码说明个整个神经网络模拟回归的过程,代码含有详细注释,直接贴下来了 import torch from torch.autograd import Variable import torch. ...
- 莫烦PyTorch学习笔记(六)——批处理
1.要点 Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径. 2.DataLoader Da ...
- 莫烦PyTorch学习笔记(三)——激励函数
1. sigmod函数 函数公式和图表如下图 在sigmod函数中我们可以看到,其输出是在(0,1)这个开区间内,这点很有意思,可以联想到概率,但是严格意义上讲,不要当成概率.sigmod函数 ...
- 莫烦pytorch学习笔记(二)——variable
.简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...
随机推荐
- 自动化测试工具2-testcomplete
今天来说说testcomplete的使用 录了一个简单案例视频,网址如下:https://v.qq.com/x/page/f05116a062y.html 第一步是创建一个工程: 输入工程名,和选择工 ...
- Python3数据分析与挖掘建模实战✍✍✍
Python3数据分析与挖掘建模实战 Python数据分析简介 Python入门 运行:cmd下"python hello.py" 基本命令: 第三方库 安装 Windows中 p ...
- js 实现多选
效果: html: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> < ...
- 使用<script>标签在HTML网页中插入JavaScript代码
新朋友你在哪里(如何插入JS) 我们来看看如何写入JS代码?你只需一步操作,使用<script>标签在HTML网页中插入JavaScript代码.注意, <script>标签要 ...
- 【笔记篇】(理论向)快速傅里叶变换(FFT)学习笔记w
现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformati ...
- python ORM框架:SqlAlchemy
ORM,对象关系映射,即Object Relational Mapping的简称,通过ORM框架将编程语言中的对象模型与数据库的关系模型建立映射关系,这样做的目的:简化sql语言操作数据库的繁琐过程( ...
- struts使用
下载文件 <action name="download" class="thirdIssueAction" method="getDownloa ...
- CSIC_716_20191119【常用模块的用法 subprocess、re、logging、防止自动测试、包的理论】
subprocess模块 可以通过python代码给操作系统终端发送命令,并可以得到返回结果. import subprocess str = input('>>>请输入命令') # ...
- 微信小程序为什么看不到所有的console.log()的日志信息
记录一个巨傻无比的问题 1.在首页的onLoad()函数里面,加了地理位置的加载,并打印到控制台上,可是今天就是没出现 2.然后纳闷的很久,各种google,发现没有人遇到这个问题 3.再然后,我就看 ...
- leetcode-241-为运算表达式设置优先级*
题目描述: 方法:分治* class Solution: def diffWaysToCompute(self, input: str) -> List[int]: if input.isdig ...