hdu 1576 A/B (求逆元)
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
1000 53
87 123456789
6060
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define LL __int64
const int maxn = 1e3 + ;
const int mo = ;
using namespace std; void exgcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if(!b) {d = a; x = ; y = ;}
else{ exgcd(b, a%b, d, y, x); y -= x*(a/b); }
} LL mo_reve(LL a, LL n)
{
LL x, y;
LL d;
exgcd(a, n, d, x, y);
if(d==) return (x%n+n)%n;
else return -;
} int main()
{
int t, n, b;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &b);
int x = mo_reve(b, mo);
printf("%d\n", n*x%mo);
}
return ;
}
hdu 1576 A/B (求逆元)的更多相关文章
- HDU 1576 A/B( 逆元水 )
链接:传送门 思路: 现在给出 n = A % 9973,n = A - A/9973×9973,已知 B|A ,设 A = Bx,可以得到如下形式的式子:Bx + 9973×y = n ,因为gcd ...
- hdu 1576 求逆元
题意:给出n=A mod 9973和B,求(A/B) mod 9973 昨天用扩展欧几里得做过这题,其实用逆元也可以做. 逆元的定义:例如a*b≡1 (mod m),则b就是a关于m的逆元. 求逆元方 ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
- HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法
地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others) M ...
- hdu 1576 A/B 【扩展欧几里得】【逆元】
<题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- hdu_1576A/B(扩展欧几里得求逆元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Me ...
- HDU 1576 A/B 数论水题
http://acm.hdu.edu.cn/showproblem.php?pid=1576 写了个ex_gcd的模板...太蠢导致推了很久的公式 这里推导一下: 因为 1 = BX + 9973Y ...
- HDU 1576 A/B (两种解法)
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 分析:等式枚举法,由题意可得:, ,代入 , 得:,把变量 合在一起得: :即满足 为 倍 ...
随机推荐
- POJ 2536 之 Gopher II(二分图最大匹配)
Gopher II Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6675 Accepted: 2732 Descrip ...
- Delphi UniDAC 通过http协议连接数据库的设置
Connection through HTTP tunnel(using http protocol) Sometimes client machines are shielded by a fire ...
- 大话设计模式--解释器模式 interpreter -- C++实现实例
1. 解释器模式: 给定一个语言,定义它的文法的一种表示 并 定义一个解释器,这个解释器使用该表示文法 来解释语言中的句子. 如果一种特定类型的问题发生的频率很高,那么可能就值得将该问题的各个实例表述 ...
- 创建HTML5/CSS3单页Web布局
1. [图片] 第1步:PhotoShop 2. [代码]第2步:index.html <!DOCTYPE html><!-- The new doctype -->< ...
- 双系统重装win7和ubuntu修复win7引导方法介绍(来源百度经验)
很多朋友喜欢为电脑安装win7和ubuntu双系统,当我们重装双系统时,可能会出现win7引导不见的情况,接下来就告诉大家双系统重装win7和ubuntu修复win7引导的方法. 1.win7和ubu ...
- A N EAR -D UPLICATE D ETECTION A LGORITHM T O F ACILITATE D OCUMENT C LUSTERING——有时间看看里面的相关研究
摘自:http://aircconline.com/ijdkp/V4N6/4614ijdkp04.pdf In the syntactical approach we define binary at ...
- PHP 写入缓存
1.创建file.PHP <?php class File{ //封装方法 private $_dir; const EXT='.text';//文件后缀,定义为常量 public functi ...
- SPOJ705 Distinct Substrings (后缀自动机&后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- Nodejs文件相关操作
欢迎关注我的博客我在马路边 适用人群 本文适用于刚接触Node的小白,毕竟我也是小白,大佬请绕行. Node文件操作 在实际开发中遇到很多有关文件及文件夹的操作,比如创建.删除文件及文件夹,文件拷贝. ...
- oracle rac的特征
oracle rac的特征 1. spfile 参数文件需要被所有节点访问,需要放在共享存储上. 2. Redo ThreadRAC 环境下有多个实例,每个实例都需要有自己的一套Redo log 文件 ...