传送门

这题是用最小割树做的(不明白最小割树是什么的可以去看看这一题->这里

有了最小割树就很简单了……点数那么少……每次跑出一个最大流就暴力搞一遍就好了

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(int x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=,M=;
int head[N],Next[M],ver[M],edge[M],ee[M],tot=;
queue<int> q;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e,ee[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,edge[tot]=e,ee[tot]=e;
}
int cur[N],dep[N],n,m,S,T;
bool bfs(){
memset(dep,-,sizeof(dep));
for(int i=;i<=n;++i) cur[i]=head[i];
while(!q.empty()) q.pop();
q.push(S),dep[S]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=Next[i])
if(dep[ver[i]]<&&edge[i]){
q.push(ver[i]),dep[ver[i]]=dep[u]+;
if(ver[i]==T) return true;
}
}
return false;
}
int dfs(int u,int limit){
if(u==T||!limit) return limit;
int flow=,f;
for(int i=cur[u];i;cur[u]=i=Next[i]){
int v=ver[i];
if(dep[v]==dep[u]+&&(f=dfs(v,min(limit,edge[i])))){
flow+=f,limit-=f;
edge[i]-=f,edge[i^]+=f;
if(!limit) break;
}
}
if(!flow) dep[u]=-;
return flow;
}
int dinic(){
int flow=;
while(bfs()) flow+=dfs(S,inf);
return flow;
}
int id[N],tmp[N],ans[N][N];
void solve(int L,int R){
if(L==R) return;
for(int i=;i<=tot;i+=) edge[i]=edge[i^]=ee[i];
S=id[L],T=id[R];
int flow=dinic();
for(int i=;i<=n;++i)
if(~dep[i])
for(int j=;j<=n;++j)
if(dep[j]<)
cmin(ans[i][j],flow),cmin(ans[j][i],flow);
int l=L,r=R;
for(int i=L;i<=R;++i)
if(~dep[id[i]]) tmp[l++]=id[i];
else tmp[r--]=id[i];
memcpy(id+L,tmp+L,sizeof(int)*(R-L+));
solve(L,l-),solve(r+,R);
}
inline void init(){
memset(head,,sizeof(head)),tot=,memset(ans,0x3f,sizeof(ans));
}
int main(){
//freopen("testdata.in","r",stdin);
int T=read();
while(T--){
init();
n=read(),m=read();
for(int i=;i<=m;++i){
int u=read(),v=read(),e=read();add(u,v,e);
}
for(int i=;i<=n;++i) id[i]=i;
solve(,n);
int q=read();
while(q--){
int k=read(),res=;
for(int i=;i<=n;++i)
for(int j=i+;j<=n;++j)
if(ans[i][j]<=k) ++res;
print(res);
}
sr[++C]='\n';
}
Ot();
return ;
}

bzoj2229: [Zjoi2011]最小割(最小割树)的更多相关文章

  1. [bzoj2229][Zjoi2011]最小割_网络流_最小割树

    最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...

  2. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  3. scu - 3254 - Rain and Fgj(最小点权割)

    题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...

  4. 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流

    最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...

  5. 3532: [Sdoi2014]Lis 最小字典序最小割

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 865  Solved: 311[Submit][Status] ...

  6. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  7. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  8. 【BZOJ2229】[Zjoi2011]最小割 最小割树

    [BZOJ2229][Zjoi2011]最小割 Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有 ...

  9. 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)

    思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...

  10. BZOJ2229[Zjoi2011]最小割——最小割树

    题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...

随机推荐

  1. Java企业微信开发_08_素材管理之下载微信临时素材到本地服务器

    一.本节要点 1.获取临时素材接口 请求方式:GET(HTTPS) 请求地址:https://qyapi.weixin.qq.com/cgi-bin/media/get?access_token=AC ...

  2. NYOJ--42--dfs水过||并查集+欧拉通路--一笔画问题

    dfs水过: /* Name: NYOJ--42--一笔画问题 Author: shen_渊 Date: 18/04/17 15:22 Description: 这个题用并查集做,更好.在练搜索,试试 ...

  3. Netty5.x中新增和值得注意的点(转载http://www.coderli.com/netty-5-new-and-noteworthy/)

    该文档会列出在Netty新版本中值得注意变化和新特性列表.帮助你的应用更好的适应新的版本.   不像Netty3.x和4.x之间的变化,5.x没有那么大的变化,不过也取得了其简化设计中的一些突破性进展 ...

  4. mfc设置鼠标状态OnSetCursor响应函数

    参考文章:1.https://bbs.csdn.net/topics/70084486 2.https://blog.csdn.net/wang15061955806/article/details/ ...

  5. 1057 Stack (30)(30 分)

    Stack is one of the most fundamental data structures, which is based on the principle of Last In Fir ...

  6. 寻找总和为n的连续子数列之算法分析

    看到有这么道算法题在博客园讨论,算法eaglet和邀月都已经设计出来了,花了点时间读了下,学到点东西顺便记录下来吧. 题目是从1...n的数列中,找出总和为n的连续子数列. 这里先设好算法中需要用到的 ...

  7. mysqllog

    -- mysql delete log online 1  mysql命令purge mysql> purge master logs to "mysql-bin.000410&quo ...

  8. Poj 1504 Adding Reversed Numbers(用字符串反转数字)

    一.题目大意 反转两个数字并相加,所得结果崽反转.反转规则:如果数字后面有0则反转后前面不留0. 二.题解 反转操作利用new StringBuffer(s).reverse().toString() ...

  9. go语言执行windows下命令行的方法

    转自:http://www.jb51.net/article/61727.htm 在golang里执行windows下的命令行,例如在golang里面调用 del d:\a.txt 命令 packag ...

  10. 【转】ruby 时间日期处理

    我们可以使用Time类来生成一个当前时间的对象: t = Time.new 或 t = Time.now Time类有类方法mktime(同义方法是local方法)来根据传入的参数生成时间对象,并且它 ...