传送门

这题是用最小割树做的(不明白最小割树是什么的可以去看看这一题->这里

有了最小割树就很简单了……点数那么少……每次跑出一个最大流就暴力搞一遍就好了

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(int x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=,M=;
int head[N],Next[M],ver[M],edge[M],ee[M],tot=;
queue<int> q;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e,ee[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,edge[tot]=e,ee[tot]=e;
}
int cur[N],dep[N],n,m,S,T;
bool bfs(){
memset(dep,-,sizeof(dep));
for(int i=;i<=n;++i) cur[i]=head[i];
while(!q.empty()) q.pop();
q.push(S),dep[S]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=Next[i])
if(dep[ver[i]]<&&edge[i]){
q.push(ver[i]),dep[ver[i]]=dep[u]+;
if(ver[i]==T) return true;
}
}
return false;
}
int dfs(int u,int limit){
if(u==T||!limit) return limit;
int flow=,f;
for(int i=cur[u];i;cur[u]=i=Next[i]){
int v=ver[i];
if(dep[v]==dep[u]+&&(f=dfs(v,min(limit,edge[i])))){
flow+=f,limit-=f;
edge[i]-=f,edge[i^]+=f;
if(!limit) break;
}
}
if(!flow) dep[u]=-;
return flow;
}
int dinic(){
int flow=;
while(bfs()) flow+=dfs(S,inf);
return flow;
}
int id[N],tmp[N],ans[N][N];
void solve(int L,int R){
if(L==R) return;
for(int i=;i<=tot;i+=) edge[i]=edge[i^]=ee[i];
S=id[L],T=id[R];
int flow=dinic();
for(int i=;i<=n;++i)
if(~dep[i])
for(int j=;j<=n;++j)
if(dep[j]<)
cmin(ans[i][j],flow),cmin(ans[j][i],flow);
int l=L,r=R;
for(int i=L;i<=R;++i)
if(~dep[id[i]]) tmp[l++]=id[i];
else tmp[r--]=id[i];
memcpy(id+L,tmp+L,sizeof(int)*(R-L+));
solve(L,l-),solve(r+,R);
}
inline void init(){
memset(head,,sizeof(head)),tot=,memset(ans,0x3f,sizeof(ans));
}
int main(){
//freopen("testdata.in","r",stdin);
int T=read();
while(T--){
init();
n=read(),m=read();
for(int i=;i<=m;++i){
int u=read(),v=read(),e=read();add(u,v,e);
}
for(int i=;i<=n;++i) id[i]=i;
solve(,n);
int q=read();
while(q--){
int k=read(),res=;
for(int i=;i<=n;++i)
for(int j=i+;j<=n;++j)
if(ans[i][j]<=k) ++res;
print(res);
}
sr[++C]='\n';
}
Ot();
return ;
}

bzoj2229: [Zjoi2011]最小割(最小割树)的更多相关文章

  1. [bzoj2229][Zjoi2011]最小割_网络流_最小割树

    最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...

  2. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  3. scu - 3254 - Rain and Fgj(最小点权割)

    题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...

  4. 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流

    最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...

  5. 3532: [Sdoi2014]Lis 最小字典序最小割

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 865  Solved: 311[Submit][Status] ...

  6. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  7. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  8. 【BZOJ2229】[Zjoi2011]最小割 最小割树

    [BZOJ2229][Zjoi2011]最小割 Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有 ...

  9. 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)

    思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...

  10. BZOJ2229[Zjoi2011]最小割——最小割树

    题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...

随机推荐

  1. poj 2106 Boolean Expressions 课本代码

    #include<cstdio> const int maxn=100 +10; int val[maxn],vtop; int op[maxn],otop; void insert(in ...

  2. ES _source字段介绍——json文档,去掉的话无法更新部分文档,最重要的是无法reindex

    摘自:https://es.xiaoleilu.com/070_Index_Mgmt/31_Metadata_source.html The _source field stores the JSON ...

  3. 手动导入XMPPFramework框架

    环境: Xcode 8.2.1 XMPPFramework 3.6.5 (下载地址) Objective-C (项目使用的语言,最新版的3.7.0要求convert to swift) 1.下载XMP ...

  4. 冷备手工完全恢复(recover database,recover tablespace,recover datafile)

    冷备手工完全恢复 1.   手工完全恢复三种级别: recover database: 所有或大部分datafile丢失,一般是在mount状态完成.recover tablespace:    非关 ...

  5. Sublime Text 全程指南(转载)

    摘要(Abstract) 本文系统全面的介绍了Sublime Text,旨在成为最优秀的Sublime Text中文教程. 更新记录 2014/09/27:完成初稿 2014/09/28: 更正打开控 ...

  6. python为类定义构造函数

    用python进行OO编程时, 经常会用到类的构造函数来初始化一些变量. class FileData:     def __init__(self, data, name, type):       ...

  7. 查看,上传crushmap命令

    标签(空格分隔): ceph,ceph运维,crushmap 查看crushmap命令 从mon节点获取crushmap: # ceph osd getcrushmap -o crush.map 反编 ...

  8. Linux系统中‘dmesg’命令处理故障和收集系统信息的7种用法

    转自:https://linux.cn/article-3587-1.html 'dmesg'命令显示linux内核的环形缓冲区信息,我们可以从中获得诸如系统架构.cpu.挂载的硬件,RAM等多个运行 ...

  9. ES6学习之正则扩展

    RegExp正则函数 var reg = new RegExp("abc","igm"); //等价于 var reg = new RegExp(/abc/ig ...

  10. Python-实现与metasploit交互并进行ms17_010攻击

    关于ms17_010,可参考http://www.cnblogs.com/sch01ar/p/7672454.html 目标IP:192.168.220.139 本机IP:192.168.220.14 ...