前言

斜率优化\(DP\)是难倒我很久的一个算法,我花了很长时间都难以理解。后来,经过无数次的研究加以对一些例题的理解,总算啃下了这根硬骨头。

基本式子

斜率优化\(DP\)的式子略有些复杂,大致可以表示成这样:

\[f_i=min_{j=1}^{i-1}(A(j)-B(j)*S(i)+C(i))\]

其中\(A(j)\)和\(B(j)\)是两个只与\(j\)有关的函数,\(S(i)\)和\(C(i)\)是两个只与\(i\)有关的函数,式子中的\(min\)其实也可以替换成\(max\),但这里以\(min\)为例。

不难发现,如果只有\(A(j)\)和\(C(i)\)两项,就是单调队列优化\(DP\)的基本式子了。

但是,由于式子中含有\(B(j)*S(i)\)这一项既与\(i\)相关,又与\(j\)相关的式子,就不能直接用单调队列,而要进行一定转化了。

考虑将\(A(j)\)移到等号左边,并将\(f_i\)移到等号右边,则原式可以转化成这样:

\[A(j)=B(j)*S(i)+(f_i-C(i))\]

注意,在\(i\)不变的时候,我们可以将只与\(i\)有关的项看成常数项。

于是,这个函数就可以看作一条直线,其中\(S(i)\)就相当于这条直线的斜率,而\(f_i-C(i)\)就相当于这条直线的截距

而\(C(i)\)是固定的,因此,如果要让\(f_i\)最小,则应让\(f_i-C(i)\)最小,对应到图像中就是让截距最小。

那么应如何让截距最小呢?

大致思路

首先,我们可以想象有一条斜率固定的直线(我太懒,不想画图... ...),然后图上有若干个点,现在要用这条直线从图的最下方往上慢慢移动,直至碰到第一个点,而这个点就是我们要找的最优点。

则不难发现,如果连续的三个点呈上凸状,则无论该直线斜率取多少,碰到的第一个点都不可能是中间这个点。

换句话说,就是中间这个点对答案没有任何贡献了。

于是就有一个策略:当我们要加入一个新的点时,比较当前点与前一个插入的点\(S_1\)、前一个插入的点与倒数第二个插入的点的斜率\(S_2\),如果\(S_1\le S_2\),则可将前一个插入的点弹出。

重复此操作,直至\(S_1>S_2\)或图上只剩一个点,然后将当前点插入。

如何求最优解

但是,这样一来,我们好像还是没能求出最优解。

此时又有两种操作方式:在凸包上二分单调队列维护最优解

对于某些问题,它可以确保决策单调性,即一个点如果当前不是最优解,则以后都不可能是最优解了。这样的问题可以直接用单调队列来维护最优解。

但有些问题却不一定满足这种性质,此时就需要在凸包上二分最优解了,但依然需要用单调队列来维护点集。

所以,如果你不会单调队列,最好赶紧去研究一下,然后再学习斜率优化\(DP\)。

几道例题

第一道例题: 【BZOJ2726】[SDOI2012] 任务安排

听说是入门题?洛谷上的弱化版可以直接单调队列维护,但是\(BZOJ\)上存在负数,需要在凸包上二分。

第二道例题: 【CF311B】Cats Transport

一眼看上去像是\(WQS\)二分,其实题意转换后可以直接斜率优化。

第三道例题: 【洛谷3648】[APIO2014] 序列分割

一开始觉得是区间\(DP\),结果一看数据范围,推了波性质,才发现其实可以用斜率优化\(DP\)来做。

动态规划专题(五)——斜率优化DP的更多相关文章

  1. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  2. 斜率优化dp(POJ1180 Uva1451)

    学这个斜率优化dp却找到这个真心容易出错的题目,其中要从n倒过来到1的确实没有想到,另外斜率优化dp的算法一开始看网上各种大牛博客自以为懂了,最后才发现是错了. 不过觉得看那些博客中都是用文字来描述, ...

  3. HDU3507 print article【斜率优化dp】

    打印文章 时间限制:9000/3000 MS(Java / Others)内存限制:131072/65536 K(Java / Others) 总共提交:14521已接受提交:4531 问题描述 零有 ...

  4. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  5. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  6. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  7. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  9. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

随机推荐

  1. Codeforces Round #527 (Div. 3)D2(栈,思维)

    #include<bits/stdc++.h>using namespace std;int a[200007];stack<int>s;int main(){    int ...

  2. 2018ICPC徐州区域赛网络赛B(逆序枚举或者正序深度搜索)

    #include<bits/stdc++.h>using namespace std;int n,m,k,l;int x[1007],y[1007],z[1007];int dp[1007 ...

  3. C#正则表达式快速入门

    作者将自己在学习正则表达式中的心得和笔记作了个总结性文章,希望对初学C#正则表达式的读者有帮助. [内容] 什么是正则表达式 涉及的基本的类 正则表达式基础知识 构建表达式基本方法 编写一个检验程序 ...

  4. Unity---遇到的一些坑和解决方案

    目录 1.在UGUI中的物体顺时针旋转Z是负的.(和正常3D中是相反的) 2.MoveTowards()+Vector3.Distance()控制物体的移动 3.trtransform.SetPare ...

  5. 小程序启用slot -- 传入 wxml标签

    options:{ multipleSlots:true } 直接看:https://www.jianshu.com/p/b22c9e075931

  6. 消息中间件的研究 (四)RabbitMQ、Kafka、RocketMQ消息中间件的对比及分析

    RabbitMQ:     RabbitMQ是使用Erlang语言开发的开源消息队列系统,基于AMQP协议来实现.AMQP的主要特征是面向消息.队列.路由(包括点对点和发布/订阅).可靠性.安全.AM ...

  7. Node.js实现TCP和HTTP并作简单的比较

    TCP和Node 传输控制协议是一个面向连接的协议,换句话说,它是一个传输层的协议,它主要的职务呢,就是确保信息传输的正确性. 我们使用的很多如HTTP协议都是基于TCP的,为什么呢?因为我们不希望传 ...

  8. nagios客户端之nrpe3.2.1安装(Ubuntu)

    1.删除dpkg安装的nrpedpkg -l | grep nrpedkpg -P nagios-nrpe-server 2.ubuntu下nrpe3.2.1安装 下载nrpe3.2.1的源码包:ht ...

  9. myeclipse9.0安装svn插件

    先得保证myeclipse9.0是可以正常使用的吧. 第一步当然是从网上下载SVN插件啦.myeclipse9.0集成的eclipse版本是属于3.x,所以下载eclipse3.x系列的SVN插件. ...

  10. ACdream 1236 Burning Bridges 割边 + 去重边

    题目就是求一副图的割边,然后对于那些有重复的边的,不能算做割边. 思路就是每次加入一条边的时候,判断这条边是否存在过,存在过的话,就把那条边设为inf,表示不能作为割边.于是有了这样的代码 #incl ...