提到二叉查找树,就得想到二叉查找树的递归定义,

左子树的节点值都小于根节点,右子树的节点值都大于根节点。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个n,问有多少个不同的二叉查找树,使得每个节点的值为 1...n?

例如,

给定n=3,你的程序应该返回所有的这5个不同的二叉排序树的个数。

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.

For example,
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree with next pointer.
 * struct TreeLinkNode {
 *  int val;
 *  TreeLinkNode *left, *right, *next;
 *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 * };
 */
vector<TreeNode *> generate(int start, int end)
{
    vector<TreeNode *> subTree;
    if (start > end)
    {
        subTree.push_back(NULL);
        return subTree;
    }

    //对每个节点做root节点做遍历判断,当某个节点为root时候满足条件的二叉树可能有多个
    for (int k = start; k <= end; ++k)
    {
        vector<TreeNode *> leftSubTree = generate(start, k - 1);
        vector<TreeNode *> rightSubTree = generate(k + 1, end);
        for (int i = 0; i < leftSubTree.size(); ++i)
        {
            for (int j = 0; j < rightSubTree.size(); ++j)
            {
                TreeNode *tmp = new TreeNode(k);
                tmp->left = leftSubTree[i];
                tmp->right = rightSubTree[j];
                subTree.push_back(tmp);
            }
        }
    }
    return subTree;
}

vector<TreeNode *> generateTrees(int n)
{
    if (n == 0)
    {
        return generate(1, 0);
    }
    return generate(1, n);
}

vector<vector<int> > levelOrder(TreeNode *root)
{

vector<vector<int> > matrix;
    if(root == NULL)
    {
        return matrix;
    }
    vector<int> temp;
    temp.push_back(root->val);
    matrix.push_back(temp);

vector<TreeNode *> path;
    path.push_back(root);

int count = 1;
    while(!path.empty())
    {
        TreeNode *tn = path.front();
        if(tn->left)
        {
            path.push_back(tn->left);
        }
        if(tn->right)
        {
            path.push_back(tn->right);
        }
        path.erase(path.begin());
        count--;

if(count == 0)
        {
            vector<int> tmp;
            vector<TreeNode *>::iterator it = path.begin();
            for(; it != path.end(); ++it)
            {
                tmp.push_back((*it)->val);
            }
            if(tmp.size() > 0)
            {
                matrix.push_back(tmp);
            }
            count = path.size();
        }
    }
    return matrix;
}

int main()
{

vector<TreeNode *> vRoot;
    vector<vector<int> > ans;

vRoot = generateTrees(3);

for (int n = 0; n < vRoot.size(); ++n)
    {
        ans.clear();
        ans = levelOrder(vRoot[n]);
        cout << "----------------------" << endl;
        for (int i = 0; i < ans.size(); ++i)
        {
            for (int j = 0; j < ans[i].size(); ++j)
            {
                cout << ans[i][j] << " ";
            }
            cout << endl;
        }
    }

for (int i = 0; i < vRoot.size(); ++i)
    {
        DestroyTree(vRoot[i]);
    }
    return 0;
}

 
结果输出:
----------------------
1
2
3
----------------------
1
3
2
----------------------
2
1 3
----------------------
3
1
2
----------------------
3
2
1
 
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

 
 
 
 

【二叉查找树】02不同的二叉查找树个数II【Unique Binary Search Trees II】的更多相关文章

  1. [Swift]LeetCode95. 不同的二叉搜索树 II | Unique Binary Search Trees II

    Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ...

  2. [LeetCode] 95. Unique Binary Search Trees II(给定一个数字n,返回所有二叉搜索树) ☆☆☆

    Unique Binary Search Trees II leetcode java [LeetCode]Unique Binary Search Trees II 异构二叉查找树II Unique ...

  3. leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses

    96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...

  4. 【LeetCode】95. Unique Binary Search Trees II 解题报告(Python)

    [LeetCode]95. Unique Binary Search Trees II 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzh ...

  5. 【LeetCode】95. Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  6. 【leetcode】Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  7. 41. Unique Binary Search Trees && Unique Binary Search Trees II

    Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...

  8. LeetCode: Unique Binary Search Trees II 解题报告

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  9. Unique Binary Search Trees,Unique Binary Search Trees II

    Unique Binary Search Trees Total Accepted: 69271 Total Submissions: 191174 Difficulty: Medium Given  ...

  10. LeetCode解题报告—— Reverse Linked List II & Restore IP Addresses & Unique Binary Search Trees II

    1. Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass ...

随机推荐

  1. Linq系列(7)——表达式树之ExpressionVisitor

    大家好,由于今天项目升级,大家都在获最新代码,所以我又有时间在这里写点东西,跟大家分享. 在上一篇的文章中我介绍了一个dll,使大家在debug的时候可以可视化的看到ExpressionTree的Bo ...

  2. linux的文件夹权限

    r:读取文件夹结构清单的权限,可以列出该文件夹下的所有文件. w:更改目录结构清单的能力,可以新建文件和目录,删除文件和目录(不管这个文件是否属于你),对文件和目录更名,移动文件和目录. x:具有x权 ...

  3. 使用UIImageView展现来自网络的图片

    本文转载至 http://www.cnblogs.com/chivas/archive/2012/05/21/2512324.html UIImageView:可以通过UIImage加载图片赋给UII ...

  4. js验证金额是否符合要求的正则表达式

    正则的只是就不在这里重复的讲了,直接上代码 var mny = /^(((([1-9]([0-9]{0,8}))|0)\.([0-9]{1,2}))|([1-9]([0-9]{0,8})))$/; m ...

  5. spring boot的对象注入

    1 需求 现在我们的项目中需要引入一个java类库,我想要很方便的使用该类库中的一个类,并且我想要创建这个类的一个单例对象.然后可以很方便的在各个模块中用@AutoWired进行对象注入. 比如一个配 ...

  6. php的json_encode不兼容JSON_UNESCAPED_UNICODE

    //php的json_encode不兼容JSON_UNESCAPED_UNICODE的解决方案 function _json_encode($value) { if (version_compare( ...

  7. Opennms -安装

    参考官方网站:https://docs.opennms.org/opennms/releases/latest/guide-install/guide-install.html#gi-install- ...

  8. $ php app/console fos:user:promote

    $ php app/console fos:user:create Please choose a username:admin Please choose an email:admin21@dwq ...

  9. CodeBackUP_node_find_serial

    /*************************************************************** ** Find the serial number Node ** R ...

  10. AbstractQueuedSynchronizer(一)

    应该将子类定义为非公共内部帮助器类,一般并发包类用内部类Sync sync来继承并实现.为实现依赖于先进先出 (FIFO) 等待队列的阻塞锁和相关同步器(信号量.事件,等等)提供一个框架.此类的设计目 ...