提到二叉查找树,就得想到二叉查找树的递归定义,

左子树的节点值都小于根节点,右子树的节点值都大于根节点。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个n,问有多少个不同的二叉查找树,使得每个节点的值为 1...n?

例如,

给定n=3,你的程序应该返回所有的这5个不同的二叉排序树的个数。

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.

For example,
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree with next pointer.
 * struct TreeLinkNode {
 *  int val;
 *  TreeLinkNode *left, *right, *next;
 *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 * };
 */
vector<TreeNode *> generate(int start, int end)
{
    vector<TreeNode *> subTree;
    if (start > end)
    {
        subTree.push_back(NULL);
        return subTree;
    }

    //对每个节点做root节点做遍历判断,当某个节点为root时候满足条件的二叉树可能有多个
    for (int k = start; k <= end; ++k)
    {
        vector<TreeNode *> leftSubTree = generate(start, k - 1);
        vector<TreeNode *> rightSubTree = generate(k + 1, end);
        for (int i = 0; i < leftSubTree.size(); ++i)
        {
            for (int j = 0; j < rightSubTree.size(); ++j)
            {
                TreeNode *tmp = new TreeNode(k);
                tmp->left = leftSubTree[i];
                tmp->right = rightSubTree[j];
                subTree.push_back(tmp);
            }
        }
    }
    return subTree;
}

vector<TreeNode *> generateTrees(int n)
{
    if (n == 0)
    {
        return generate(1, 0);
    }
    return generate(1, n);
}

vector<vector<int> > levelOrder(TreeNode *root)
{

vector<vector<int> > matrix;
    if(root == NULL)
    {
        return matrix;
    }
    vector<int> temp;
    temp.push_back(root->val);
    matrix.push_back(temp);

vector<TreeNode *> path;
    path.push_back(root);

int count = 1;
    while(!path.empty())
    {
        TreeNode *tn = path.front();
        if(tn->left)
        {
            path.push_back(tn->left);
        }
        if(tn->right)
        {
            path.push_back(tn->right);
        }
        path.erase(path.begin());
        count--;

if(count == 0)
        {
            vector<int> tmp;
            vector<TreeNode *>::iterator it = path.begin();
            for(; it != path.end(); ++it)
            {
                tmp.push_back((*it)->val);
            }
            if(tmp.size() > 0)
            {
                matrix.push_back(tmp);
            }
            count = path.size();
        }
    }
    return matrix;
}

int main()
{

vector<TreeNode *> vRoot;
    vector<vector<int> > ans;

vRoot = generateTrees(3);

for (int n = 0; n < vRoot.size(); ++n)
    {
        ans.clear();
        ans = levelOrder(vRoot[n]);
        cout << "----------------------" << endl;
        for (int i = 0; i < ans.size(); ++i)
        {
            for (int j = 0; j < ans[i].size(); ++j)
            {
                cout << ans[i][j] << " ";
            }
            cout << endl;
        }
    }

for (int i = 0; i < vRoot.size(); ++i)
    {
        DestroyTree(vRoot[i]);
    }
    return 0;
}

 
结果输出:
----------------------
1
2
3
----------------------
1
3
2
----------------------
2
1 3
----------------------
3
1
2
----------------------
3
2
1
 
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

 
 
 
 

【二叉查找树】02不同的二叉查找树个数II【Unique Binary Search Trees II】的更多相关文章

  1. [Swift]LeetCode95. 不同的二叉搜索树 II | Unique Binary Search Trees II

    Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ...

  2. [LeetCode] 95. Unique Binary Search Trees II(给定一个数字n,返回所有二叉搜索树) ☆☆☆

    Unique Binary Search Trees II leetcode java [LeetCode]Unique Binary Search Trees II 异构二叉查找树II Unique ...

  3. leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses

    96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...

  4. 【LeetCode】95. Unique Binary Search Trees II 解题报告(Python)

    [LeetCode]95. Unique Binary Search Trees II 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzh ...

  5. 【LeetCode】95. Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  6. 【leetcode】Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  7. 41. Unique Binary Search Trees && Unique Binary Search Trees II

    Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...

  8. LeetCode: Unique Binary Search Trees II 解题报告

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  9. Unique Binary Search Trees,Unique Binary Search Trees II

    Unique Binary Search Trees Total Accepted: 69271 Total Submissions: 191174 Difficulty: Medium Given  ...

  10. LeetCode解题报告—— Reverse Linked List II & Restore IP Addresses & Unique Binary Search Trees II

    1. Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass ...

随机推荐

  1. Netty实战

    一.Netty异步和事件驱动1.Java网络编程回顾socket.accept 阻塞socket.setsockopt /非阻塞2.NIO异步非阻塞a).nio 非阻塞的关键时使用选择器(java.n ...

  2. BZOJ 1602 [Usaco2008 Oct]牧场行走 dfs

    题意:id=1602">链接 方法:深搜暴力 解析: 这题刚看完还有点意思,没看范围前想了想树形DP,只是随便画个图看出来是没法DP的,所以去看范围. woc我没看错范围?果断n^2暴 ...

  3. centos7.0 安装nginx

    在centos7.0下安装nginx需要安装 prce和zlib包去官网下载相应的包 然后解压相应的包进行编译 解压nginx源码包进入到解压文件 ./configure --sbin-path=/u ...

  4. OSI模型第三层网络层-初识路由协议

    1.路由协议: 顾名思义就是路由器所使用的协议. 分类: (1)按照作用范围分类,IGP(类型)内部网关协议(rip,ospf,isis),EGP(类型)边界路由协议(bgp) 把互联网比作整个世界土 ...

  5. 【python】-- 进程与线程

    进程与线程 一.概念 1.简述: 计算机,所有的指令的操作都是有CPU来负责的,cpu是来负责运算的.OS(操作系统) 调度cpu的最小单位就是线程.程序启动后,从内存中分一块空间,把数据临时存在内存 ...

  6. Redis1 介绍和字典

    Redis介绍 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(列表).set(集合).zset(sor ...

  7. openstack 官方镜像qcow2 下载和修改密码

    下载地址: CentOS6:http://cloud.centos.org/centos/6/images/ CentOS7:http://cloud.centos.org/centos/7/imag ...

  8. linux 基础-变量,shell基本语法

    变量 定义变量 your_name="runoob.com" #变量名和等号之间不能有空格 使用变量 your_name="qinjx" echo $your_ ...

  9. 移动端web常见问题解决方案

    meta基础知识 H5页面窗口自动调整到设备宽度,并禁止用户缩放页面 忽略将页面中的数字识别为电话号码 忽略Android平台中对邮箱地址的识别 当网站添加到主屏幕快速启动方式,可隐藏地址栏,仅针对i ...

  10. 找到最大或最小的N个值

    对于python原生的数据类型来说,并不存在直接的方法可以找到最大或最小的N个值, 传统的方法必须先排序,然后再截取相应的值,而且对于集合这类数据类型来说还不能直接排序, 需要先转化为列表才行,有的时 ...