提到二叉查找树,就得想到二叉查找树的递归定义,

左子树的节点值都小于根节点,右子树的节点值都大于根节点。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个n,问有多少个不同的二叉查找树,使得每个节点的值为 1...n?

例如,

给定n=3,你的程序应该返回所有的这5个不同的二叉排序树的个数。

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.

For example,
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree with next pointer.
 * struct TreeLinkNode {
 *  int val;
 *  TreeLinkNode *left, *right, *next;
 *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 * };
 */
vector<TreeNode *> generate(int start, int end)
{
    vector<TreeNode *> subTree;
    if (start > end)
    {
        subTree.push_back(NULL);
        return subTree;
    }

    //对每个节点做root节点做遍历判断,当某个节点为root时候满足条件的二叉树可能有多个
    for (int k = start; k <= end; ++k)
    {
        vector<TreeNode *> leftSubTree = generate(start, k - 1);
        vector<TreeNode *> rightSubTree = generate(k + 1, end);
        for (int i = 0; i < leftSubTree.size(); ++i)
        {
            for (int j = 0; j < rightSubTree.size(); ++j)
            {
                TreeNode *tmp = new TreeNode(k);
                tmp->left = leftSubTree[i];
                tmp->right = rightSubTree[j];
                subTree.push_back(tmp);
            }
        }
    }
    return subTree;
}

vector<TreeNode *> generateTrees(int n)
{
    if (n == 0)
    {
        return generate(1, 0);
    }
    return generate(1, n);
}

vector<vector<int> > levelOrder(TreeNode *root)
{

vector<vector<int> > matrix;
    if(root == NULL)
    {
        return matrix;
    }
    vector<int> temp;
    temp.push_back(root->val);
    matrix.push_back(temp);

vector<TreeNode *> path;
    path.push_back(root);

int count = 1;
    while(!path.empty())
    {
        TreeNode *tn = path.front();
        if(tn->left)
        {
            path.push_back(tn->left);
        }
        if(tn->right)
        {
            path.push_back(tn->right);
        }
        path.erase(path.begin());
        count--;

if(count == 0)
        {
            vector<int> tmp;
            vector<TreeNode *>::iterator it = path.begin();
            for(; it != path.end(); ++it)
            {
                tmp.push_back((*it)->val);
            }
            if(tmp.size() > 0)
            {
                matrix.push_back(tmp);
            }
            count = path.size();
        }
    }
    return matrix;
}

int main()
{

vector<TreeNode *> vRoot;
    vector<vector<int> > ans;

vRoot = generateTrees(3);

for (int n = 0; n < vRoot.size(); ++n)
    {
        ans.clear();
        ans = levelOrder(vRoot[n]);
        cout << "----------------------" << endl;
        for (int i = 0; i < ans.size(); ++i)
        {
            for (int j = 0; j < ans[i].size(); ++j)
            {
                cout << ans[i][j] << " ";
            }
            cout << endl;
        }
    }

for (int i = 0; i < vRoot.size(); ++i)
    {
        DestroyTree(vRoot[i]);
    }
    return 0;
}

 
结果输出:
----------------------
1
2
3
----------------------
1
3
2
----------------------
2
1 3
----------------------
3
1
2
----------------------
3
2
1
 
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

 
 
 
 

【二叉查找树】02不同的二叉查找树个数II【Unique Binary Search Trees II】的更多相关文章

  1. [Swift]LeetCode95. 不同的二叉搜索树 II | Unique Binary Search Trees II

    Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ...

  2. [LeetCode] 95. Unique Binary Search Trees II(给定一个数字n,返回所有二叉搜索树) ☆☆☆

    Unique Binary Search Trees II leetcode java [LeetCode]Unique Binary Search Trees II 异构二叉查找树II Unique ...

  3. leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses

    96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...

  4. 【LeetCode】95. Unique Binary Search Trees II 解题报告(Python)

    [LeetCode]95. Unique Binary Search Trees II 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzh ...

  5. 【LeetCode】95. Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  6. 【leetcode】Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  7. 41. Unique Binary Search Trees && Unique Binary Search Trees II

    Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...

  8. LeetCode: Unique Binary Search Trees II 解题报告

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  9. Unique Binary Search Trees,Unique Binary Search Trees II

    Unique Binary Search Trees Total Accepted: 69271 Total Submissions: 191174 Difficulty: Medium Given  ...

  10. LeetCode解题报告—— Reverse Linked List II & Restore IP Addresses & Unique Binary Search Trees II

    1. Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass ...

随机推荐

  1. 多语言中的“默认语言”设置

    最近在搞一个多语言的东西,打算如果用户是中文环境就显示中文,其他任何非中文环境就显示英文.换句话说,把默认语言设置成英文. 不过因为VS是中文的,发现即使默认资源文件是英文(AppResource.r ...

  2. term frequency–inverse document frequency

    term frequency–inverse document frequency

  3. 【python】-- 内置函数、软件目录开发规范(代码编码风格)

    内置函数 一.内置函数表格 二.内置函数演示 1.abs(x) 功能:取数的绝对值 >>> abs(-1) #取-1的绝对值 1 ########################## ...

  4. hash是什么?

    最近读关于php内核的资料,发现php中 在实现变量以及数据类型的实现中大量使用哈希算法,并且非常细致做出了很多优秀的细节设计.比如:在 zend.hash.h 中 static inline ulo ...

  5. Bootstrap学习1--响应式导航栏

    备注:最新Bootstrap手册:http://www.jqhtml.com/bootstraps-syntaxhigh/index.html <nav class="navbar n ...

  6. 第13条:合理利用try/expect/else/finally结构中的每个代码块

    核心知识点: (1)无论try块是否发生异常,都可以使用try/finally复合语句中地finally块来执行清理工作. (2)顺利运行try块后,若想使某些操作能在finally块地清理代码之前执 ...

  7. LeetCode:颜色分类【75】

    LeetCode:颜色分类[75] 题目描述 给定一个包含红色.白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色.白色.蓝色顺序排列. 此题中,我们使用整数 ...

  8. GUI菜单——菜单条、菜单、子条目之间关系

    菜单:注意区分三个概念:菜单条.菜单.菜单项 将菜单条添加到窗体,菜单条下面包括菜单,菜单下面可以使菜单或者菜单项 菜单项是最后一个.菜单后面有三角标示. 菜单条[文件] 子菜单--子条目 子条目 示 ...

  9. flex TweenLite

    本贴已在 AS天地会转发,大家可以参考:http://bbs.actionscript3.cn/viewthread.php?tid=11090&pid=91142&page=1&am ...

  10. 【leetcode刷题笔记】Longest Substring Without Repeating Characters

    Given a string, find the length of the longest substring without repeating characters. For example, ...