LINK:分层图

很精辟的一道题 写的时候没带脑子 导致搞了半天不知道哪错了。

可以想到状压每次到某一层的状态 然后这个表示方案数 多开一维表示此时路径条数的奇偶即可。

不过显然我们只需要知道路径条数的奇偶性即可。

所以对于当前状态 如果某个点路径条数为偶数 那么怎么转移都不必要 所以我们可以不需要多开一维状态来进行转移。

状态直接表示 成奇偶性即可。

考虑转移 容易发现 转移需要求出当前点集能到的下一层的点集 然后还要求出奇偶性。

暴力枚举 复杂度\(mk2^k\) 容易想到 不需要暴力枚举 然后使用lowbit操作 这样降低一倍常数。

当然还可以 使用dp 求出这些点集 具体操作还是lowbit 考虑除下当前最小的那位 的状态求出过了 直接加上当前点的贡献即可。

总复杂度\(m2^k\)

//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define S second
#define F first
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define ull unsigned long long
#define ui unsigned
#define zz p<<1
#define yy p<<1|1
#define EPS 1e-8
#define mod 998244353
#define sq sqrt
#define len(p) t[p].len
#define f(p) t[p].fa
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=10010,N=10;
int n,m;
int f[MAXN][1<<N];//f[i][j]表示当前到达第i层到第j个点的方案数的状态.
int w[MAXN][N+1],g[MAXN][N+1],pos[1<<N],w1[1<<N],w2[1<<N];
int main()
{
//freopen("1.in","r",stdin);
get(n);get(m);
rep(1,n-1,i)
{
if(i==1||i==n-1)
{
if(i==1)rep(1,m,j)w[i][1]|=(read()<<(j-1));
if(i==n-1)rep(1,m,j)w[i][j]=read();
continue;
}
rep(1,m,j)rep(1,m,k)
{
int x=read();
w[i][j]|=(x<<(k-1));
g[i][k]|=(x<<(j-1));
}
}
f[1][1]=1;
int maxx=(1<<m)-1;
rep(1,m,i)pos[1<<(i-1)]=i;
rep(1,n-1,i)
{
rep(0,maxx,j)
{
w1[j]=w1[j-(j&(-j))]^w[i][pos[j&(-j)]];
w2[j]=w2[j-(j&(-j))]^g[i][pos[j&(-j)]];
if(!f[i][j])continue;
int s=w1[j],s2=w2[j];
f[i+1][s]=(f[i+1][s]+f[i][j])%mod;
if(i!=1&&i!=n-1)f[i+1][s2]=(f[i+1][s2]+f[i][j])%mod;
}
}
put(f[n][0]);
return 0;
}

一本通 高手训练 1782 分层图 状压dp的更多相关文章

  1. HDU 3341 Lost's revenge ( Trie图 && 状压DP && 数量限制类型 )

    题意 : 给出 n 个模式串,最后给出一个主串,问你主串打乱重组的情况下,最多能够包含多少个模式串. 分析 : 如果你做过类似 Trie图 || AC自动机 + DP 类似的题目的话,那么这道题相对之 ...

  2. HDU 4845 拯救大兵瑞恩(分层图状压BFS)

    拯救大兵瑞恩 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Total Sub ...

  3. HDU 4758 Walk Through Squares ( Trie图 && 状压DP && 数量限制类型 )

    题意 : 给出一个 n 行.m 列的方格图,现从图左上角(0, 0) 到右下角的 (n, m)走出一个字符串(规定只能往下或者往右走),向右走代表' R ' 向下走则是代表 ' D ' 最后从左上角到 ...

  4. 多米诺骨牌放置问题(状压DP)

    例题: 最近小A遇到了一个很有趣的问题: 现在有一个\(n\times m\)规格的桌面,我们希望用\(1 \times 2\)规格的多米诺骨牌将其覆盖. 例如,对于一个\(10 \times 11\ ...

  5. 洛谷P3959 宝藏(状压dp)

    传送门 为什么感觉状压dp都好玄学……FlashHu大佬太强啦…… 设$f_{i,j}$表示当前选的点集为$i$,下一次要加入的点集为$j$时,新加入的点和原有的点之间的最小边权.具体的转移可以枚举$ ...

  6. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  7. POJ 1185 炮兵阵地(状压DP)

    炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26426   Accepted: 10185 Descriptio ...

  8. HDU 5823 (状压dp)

    Problem color II 题目大意 定义一个无向图的价值为给每个节点染色使得每条边连接的两个节点颜色不同的最少颜色数. 对于给定的一张由n个点组成的无向图,求该图的2^n-1张非空子图的价值. ...

  9. hdu 4856 Tunnels (bfs + 状压dp)

    题目链接 The input contains mutiple testcases. Please process till EOF.For each testcase, the first line ...

随机推荐

  1. js实现json格式化,以及json校验工具的简单实现

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, ...

  2. MySQL调优 优化需要考虑哪些方面

    MySQL调优 优化需要考虑哪些方面   优化目标与方向定位 总体目标:使得响应时间更快,吞吐量更大. (throughout --- 吞吐量:单位时间内处理事务的数量) 如何找到需要优化的地方 使用 ...

  3. Mysql 查找表中的多组前n大元素

    博客已搬家,更多内容查看https://liangyongrui.github.io/ Mysql 查找表中的多组前n大元素 如果时单组很简单,只需要排序后去前n个就行了,但是多组排序似乎就不是那么好 ...

  4. React学习路径快速进入AntDesignPro开发

    好久没有写博客,有空再来记一下.最近在整些小东西,需要用到前端,最开始本着对nodejs的动不动几百兆插件的恐惧, 于是使用自己以前写的 OSS.Pjax 小框架(类似国外的Pjax,利用pushSt ...

  5. django 本地项目部署uwsgi 以及云服务器部署 uwsgi+Nginx+Docker+MySQL主从

    一 .django 本地项目部署uwsgi 1 本地部署项目 uwsgi安装测试 通过uwsgi 进行简单部署 安装uwsgi命令:pip install uwsgi -i http://pypi.d ...

  6. PE解析器与加载器编写指南

    PE解析器与加载器编写指南 最近准备去实习,看公司要求应该开发PE相关的查杀引擎,因此再回头复习一下PE格式,重新写一个PE解析器和PE加载器,再此记录下有关坑. PE解析器部分: 1)如何确定节区表 ...

  7. java 基础(三) 搭建Java编译环境(树莓派)

    安装需求1.JDK的安装2.PI4J的安装 JDK的安装1.首先到JDK的官网:https://www.oracle.com/technetwork/java/javase/downloads/ind ...

  8. python生成器原理剖析

    python生成器原理剖析 函数的调用满足"后进先出"的原则,也就是说,最后被调用的函数应该第一个返回,函数的递归调用就是一个经典的例子.显然,内存中以"后进先出&quo ...

  9. Spring升级案例之IOC介绍和依赖注入

    Spring升级案例之IOC介绍和依赖注入 一.IOC的概念和作用 1.什么是IOC 控制反转(Inversion of Control, IoC)是一种设计思想,在Java中就是将设计好的对象交给容 ...

  10. Go的100天之旅-04基础数据类型

    基础数据类型 在变量的定义中,我们讲了每个变量是有类型的,类型在计算机中是用来约束数据的解释.Go语言和其它计算机语言一样,提供丰富了丰富的数据类型,我们就来看看到底有哪些类型,同时也可以比较一下它和 ...