一本通 高手训练 1782 分层图 状压dp
LINK:分层图
很精辟的一道题 写的时候没带脑子 导致搞了半天不知道哪错了。
可以想到状压每次到某一层的状态 然后这个表示方案数 多开一维表示此时路径条数的奇偶即可。
不过显然我们只需要知道路径条数的奇偶性即可。
所以对于当前状态 如果某个点路径条数为偶数 那么怎么转移都不必要 所以我们可以不需要多开一维状态来进行转移。
状态直接表示 成奇偶性即可。
考虑转移 容易发现 转移需要求出当前点集能到的下一层的点集 然后还要求出奇偶性。
暴力枚举 复杂度\(mk2^k\) 容易想到 不需要暴力枚举 然后使用lowbit操作 这样降低一倍常数。
当然还可以 使用dp 求出这些点集 具体操作还是lowbit 考虑除下当前最小的那位 的状态求出过了 直接加上当前点的贡献即可。
总复杂度\(m2^k\)
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define S second
#define F first
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define ull unsigned long long
#define ui unsigned
#define zz p<<1
#define yy p<<1|1
#define EPS 1e-8
#define mod 998244353
#define sq sqrt
#define len(p) t[p].len
#define f(p) t[p].fa
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=10010,N=10;
int n,m;
int f[MAXN][1<<N];//f[i][j]表示当前到达第i层到第j个点的方案数的状态.
int w[MAXN][N+1],g[MAXN][N+1],pos[1<<N],w1[1<<N],w2[1<<N];
int main()
{
//freopen("1.in","r",stdin);
get(n);get(m);
rep(1,n-1,i)
{
if(i==1||i==n-1)
{
if(i==1)rep(1,m,j)w[i][1]|=(read()<<(j-1));
if(i==n-1)rep(1,m,j)w[i][j]=read();
continue;
}
rep(1,m,j)rep(1,m,k)
{
int x=read();
w[i][j]|=(x<<(k-1));
g[i][k]|=(x<<(j-1));
}
}
f[1][1]=1;
int maxx=(1<<m)-1;
rep(1,m,i)pos[1<<(i-1)]=i;
rep(1,n-1,i)
{
rep(0,maxx,j)
{
w1[j]=w1[j-(j&(-j))]^w[i][pos[j&(-j)]];
w2[j]=w2[j-(j&(-j))]^g[i][pos[j&(-j)]];
if(!f[i][j])continue;
int s=w1[j],s2=w2[j];
f[i+1][s]=(f[i+1][s]+f[i][j])%mod;
if(i!=1&&i!=n-1)f[i+1][s2]=(f[i+1][s2]+f[i][j])%mod;
}
}
put(f[n][0]);
return 0;
}
一本通 高手训练 1782 分层图 状压dp的更多相关文章
- HDU 3341 Lost's revenge ( Trie图 && 状压DP && 数量限制类型 )
题意 : 给出 n 个模式串,最后给出一个主串,问你主串打乱重组的情况下,最多能够包含多少个模式串. 分析 : 如果你做过类似 Trie图 || AC自动机 + DP 类似的题目的话,那么这道题相对之 ...
- HDU 4845 拯救大兵瑞恩(分层图状压BFS)
拯救大兵瑞恩 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Sub ...
- HDU 4758 Walk Through Squares ( Trie图 && 状压DP && 数量限制类型 )
题意 : 给出一个 n 行.m 列的方格图,现从图左上角(0, 0) 到右下角的 (n, m)走出一个字符串(规定只能往下或者往右走),向右走代表' R ' 向下走则是代表 ' D ' 最后从左上角到 ...
- 多米诺骨牌放置问题(状压DP)
例题: 最近小A遇到了一个很有趣的问题: 现在有一个\(n\times m\)规格的桌面,我们希望用\(1 \times 2\)规格的多米诺骨牌将其覆盖. 例如,对于一个\(10 \times 11\ ...
- 洛谷P3959 宝藏(状压dp)
传送门 为什么感觉状压dp都好玄学……FlashHu大佬太强啦…… 设$f_{i,j}$表示当前选的点集为$i$,下一次要加入的点集为$j$时,新加入的点和原有的点之间的最小边权.具体的转移可以枚举$ ...
- HDU 1565&1569 方格取数系列(状压DP或者最大流)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- POJ 1185 炮兵阵地(状压DP)
炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 26426 Accepted: 10185 Descriptio ...
- HDU 5823 (状压dp)
Problem color II 题目大意 定义一个无向图的价值为给每个节点染色使得每条边连接的两个节点颜色不同的最少颜色数. 对于给定的一张由n个点组成的无向图,求该图的2^n-1张非空子图的价值. ...
- hdu 4856 Tunnels (bfs + 状压dp)
题目链接 The input contains mutiple testcases. Please process till EOF.For each testcase, the first line ...
随机推荐
- mongodb安装与mongo vue的使用
首先,下载mongodb,然后安装 http://downloads.mongodb.com/win32/mongodb-win32-x86_64-enterprise-windows-64-2.6. ...
- yum仓库管理 yum-config-manager
yum仓库管理 yum-config-manager 简介 # yum 主要功能是更方便的添加/删除/更新RPM 包,自动解决包的倚赖性问题,便于管理大量系统的更新问题. # yum 可以同时配置 ...
- 读CSAPP第一章的收获
这个系列只写了CSAPP第三版对于我的收获. 里面的内容很多,我只写我以前不知道的,然后现在又觉得挺有用的内容. 没有很好的排版,将就看. Amadhl定律:主要观点,想要显著加速整个系统,必须提升全 ...
- C# 基于内容电影推荐项目(一)
从今天起,我将制作一个电影推荐项目,在此写下博客,记录每天的成果. 其实,从我发布 C# 爬取猫眼电影数据 这篇博客后, 我就已经开始制作电影推荐项目了,今天写下这篇博客,也是因为项目进度已经完成50 ...
- POJ2376贪心
题意:数轴上有 n (1<=n<=25000)个闭区间 [ai, bi],选择尽量少的区间覆盖一条指定线段 [1,t](1<=t<=1,000,000).覆盖整点,即[1,2] ...
- TCP Wrappers(简单防火墙)---限制IP登录ssh
1.TCP Wrappers 简介 TCP_ Wrappers是- 一个工作在第四层(传输层)的的安全工具,对有状态连接(TCP)的特定服务进行安全检测并实现访问控制,界定方式是凡是调用libwrap ...
- 不用破解版的 Navicat 了,几款免费且好用的 SQL 客户端送给你
我是风筝,公众号「古时的风筝」. 文章会收录在 JavaNewBee 中,更有 Java 后端知识图谱,从小白到大牛要走的路都在里面. 没别的意思,今天就是为了给你推荐几款 MySQL 客户端,这几款 ...
- 《SpringBoot判空处理》接开@valid的面纱
一.事有起因 我们在与前端交互的时候,一般会遇到字段格式校验及非空非null的校验,在没有SpringBoot注解的时候, 我们可能会在service进行处理: if(null == name){ t ...
- 一小时完成后台开发:DjangoRestFramework开发实践
DjangoRestFramework开发实践 在这之前我写过一篇关于Django与Drf快速开发实践的博客,Django快速开发实践:Drf框架和xadmin配置指北,粗略说了一下Drf配置和基本使 ...
- Scala 面向对象(七):静态属性和静态方法
1 Scala中静态的概念-伴生对象 Scala语言是完全面向对象(万物皆对象)的语言,所以并没有静态的操作(即在Scala中没有静态的概念). 但是为了能够和Java语言交互(因为Java中有静态概 ...