heapify()

前面两篇文章介绍了什么是堆以及堆的两个基本操作,但其实呢,堆还有一个大名鼎鼎的非常重要的操作,就是 heapify() 了,它是一个很神奇的操作,

可以用 O(n) 的时间把一个乱序的数组变成一个 heap。

但是呢,heapify() 并不是一个 public API,看:

所以我们没有办法直接使用。

唯一使用 heapify() 的方式呢,就是使用

PriorityQueue(Collection<? extends E> c)

这个 constructor 的时候,人家会自动调用 heapify() 这个操作。

那具体是怎么做的呢?

哈哈源码已经暴露了:

从最后一个非叶子节点开始,从后往前做 siftDown().

因为叶子节点没必要操作嘛,已经到了最下面了,还能和谁 swap?

举个例子:

我们想把这个数组进行 heapify() 操作,想把它变成一个最小堆,拿到它的最小值。

那就要从 3 开始,对 3,7,5进行 siftDown().

Step 1.

尴尬 ,3 并不用交换,因为以它为顶点的这棵小树已经满足了堆序性。

Step 2.

7 比它的两个孩子都要大,所以和较小的那个交换一下。

交换完成后;

Step 3.

最后一个要处理的就是 5 了,那这里 5 比它的两个孩子都要大,所以也和较小的那个交换一下。

换完之后结果如下,注意并没有满足堆序性,因为 4 还比 5 小呢。

所以接着和 4 换,结果如下:

这样整个 heapify() 的过程就完成了。

好了难点来了,为什么时间复杂度是 O(n) 的呢?

怎么计算这个时间复杂度呢?

其实我们在这个过程里做的操作无非就是交换交换。

那到底交换了多少次呢?

没错,交换了多少次,时间复杂度就是多少。

那我们可以看出来,其实同一层的节点最多交换的次数都是相同的。

那么这个总的交换次数 = 每层的节点数 * 每个节点最多交换的次数

这里设 k 为层数,那么这个例子里 k=3.

每层的节点数是从上到下以指数增长:

$$\ce{1, 2, 4, ..., 2^{k-1}}$$

每个节点交换的次数,

从下往上就是:

$$ 0, 1, ..., k-2, k-1 $$

那么总的交换次数 S(k) 就是两者相乘再相加:

$$S(k) = \left(2^{0} *(k-1) + 2^{1} *(k-2) + ... + 2^{k-2} *1 \right)$$

这是一个等比等差数列,标准的求和方式就是错位相减法

那么

$$2S(k) = \left(2^{1} *(k-1) + 2^{2} *(k-2) + ... + 2^{k-1} *1 \right)$$

两者相减得:

$$S(k) = \left(-2^{0} *(k-1) + 2^{1} + 2^{2} + ... + 2^{k-2} + 2^{k-1} \right)$$

化简一下:

(不好意思我实在受不了这个编辑器了。。。

所以 heapify() 时间复杂度是 O(n).

以上就是堆的三大重要操作,最后一个 heapify() 虽然不能直接操作,但是堆排序中用到了这种思路,之前的「选择排序」那篇文章里也提到了一些,感兴趣的同学可以后台回复「选择排序」获得文章~至于堆排序的具体实现和应用,以及为什么实际生产中并不爱用它,我们之后再讲。

如果你喜欢这篇文章,记得给我点赞留言哦~你们的支持和认可,就是我创作的最大动力,我们下篇文章见!

我是小齐,纽约程序媛,终生学习者,每天晚上 9 点,云自习室里不见不散!

更多干货文章见我的 Github: https://github.com/xiaoqi6666/NYCSDE

为什么堆化 heapify() 只用 O(n) 就做到了?的更多相关文章

  1. lintcode: 堆化

    堆化 给出一个整数数组,堆化操作就是把它变成一个最小堆数组. 对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[i]的右 ...

  2. Java实现的二叉堆以及堆排序详解

    一.前言 二叉堆是一个特殊的堆,其本质是一棵完全二叉树,可用数组来存储数据,如果根节点在数组的下标位置为1,那么当前节点n的左子节点为2n,有子节点在数组中的下标位置为2n+1.二叉堆类型分为最大堆( ...

  3. Java并发包源码学习系列:阻塞队列实现之PriorityBlockingQueue源码解析

    目录 PriorityBlockingQueue概述 类图结构及重要字段 什么是二叉堆 堆的基本操作 向上调整void up(int u) 向下调整void down(int u) 构造器 扩容方法t ...

  4. Java数据结构和算法(五)二叉排序树(BST)

    Java数据结构和算法(五)二叉排序树(BST) 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 二叉排序树(Binary S ...

  5. Java同步数据结构之PriorityBlockingQueue

    前言 接下来继续BlockingQueue的另一个实现,优先级阻塞队列PriorityBlockingQueue.PriorityBlockingQueue是一个无限容量的阻塞队列,由于容量是无限的所 ...

  6. 两种建立堆的方法HeapInsert & Heapify

    参考 堆排序中两种建堆方法的比较 第一种方法HeapInsert 它可以假定我们事先不知道有多少个元素,通过不断往堆里面插入元素进行调整来构建堆. 它的大致步骤如下: 首先增加堆的长度,在最末尾的地方 ...

  7. 索引堆(Index Heap)

    首先我们先来看一个由普通数组构建的普通堆. 然后我们通过前面的方法对它进行堆化(heapify),将其构建为最大堆. 结果是这样的: 对于我们所关心的这个数组而言,数组中的元素位置发生了改变.正是因为 ...

  8. lintcode-130-堆化

    130-堆化 给出一个整数数组,堆化操作就是把它变成一个最小堆数组. 对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[ ...

  9. 数据结构中的堆(Heap)

    堆排序总结 这是排序,不是查找!!!查找去找二叉排序树等. 满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树. 构建顶堆: a.构造初始堆 b.从最后一层非叶节点开始调整,一直到根节点 c.如果 ...

随机推荐

  1. mysql修改默认数据存储路径

    1.先关闭mysql服务 可cmd--services.msc进入关闭服务 或cmd命令输入net stop mysql57关闭服务 2.进入C:\ProgramData\MySQL\MySQL Se ...

  2. python中实现参数化的原理

    k就是   <参数名>

  3. STL(常用)

    STL 简单记录.讲解一些初级阶段常用的用法. STL是C++的一个标准模板库,其中包含了许多在计算机领域常用的基本数据结构以及基本算法.STL主要依赖于模板,使得STL具有广泛的通用性.这篇文章旨在 ...

  4. 3.CDN加速简介

    什么是CDN CDN的全称是Content Delivery Network,即内容分发网络.CDN的基本原理是广泛采用各种缓存服务器,将这些缓存服务器分布到用户访问相对集中的地区或网络中,在用户访问 ...

  5. Java语言的优势

    首先, Java语言是一种纯粹的面向对象的编程语言.这样就决定了Java语言更能直接客观地反映现实生活中的对象,因此Java语言更适合大型的复杂系统开发. 其次, Java语言是一种平台无关的语言.  ...

  6. matlab数字图像处理-冈萨雷斯-数据类和图像类之间的转换

    亮度图像 二值图像 属于注释 数据类间的转换 图像类和类型间的转化 把一个double类的任意数组转换成[0,1]的归一化double类数组----->mat2gray 图像类和类型间的转化例题 ...

  7. 设计模式之Command

    由于学习hystrix的使用和原理   所以就学习了command模式https://www.jdon.com/designpatterns/command.htm Command模式是最让我疑惑的一 ...

  8. maven问题汇总

    Failed to read artifact descriptor for xxx:jar 在MyEclipse中执行Maven的install命令时,报“Failed to read artifa ...

  9. 实现队列的基本操作(数据结构)-python版

    class Queue: def __init__(self): self.entries = [] self.length = 0 self.front = 0 def put(self, item ...

  10. 【MySQL】面试官:如何添加新数据库到MySQL主从复制环境?

    写在前面 今天,一名读者反馈说:自己出去面试,被面试官一顿虐啊!为什么呢?因为这名读者面试的是某大厂的研发工程师,偏技术型的.所以,在面试过程中,面试官比较偏向于问技术型的问题.不过,技术终归还是要服 ...