题解 洛谷 P6351 【[PA2011]Hard Choice】
删边操作不好处理,所以先将操作倒序,将删边转化为加边。
考虑对于两个点的询问,若这两点不连通或这两个点分别处于两个不同的边双连通分量中(两点间存在桥)时,是不满足题目要求的。
可以用\(LCT\)来维护原图的一个生成树,原先每条边带有边权,若在原图中或加边过程中出现了环,则在树上这两点之间的边全部边权清零。
此时如果对两点之间求路径权值和,若在原图中这两点处在一个环上,那么权值和肯定为\(0\),同时用并查集维护连通性,就可以对询问进行回答了。
具体实现看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 300010
#define mk make_pair
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,qu,tot;
int f[maxn],ans[maxn];
int fa[maxn],ch[maxn][2],rev[maxn],val[maxn],sum[maxn],tag[maxn];
char opt[maxn][2];
map<pair<int,int>,int> mp;
struct edge
{
int x,y;
}e[maxn],q[maxn];
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
bool check(int x)
{
return ch[fa[x]][1]==x;
}
void pushup(int x)
{
sum[x]=val[x]+sum[ch[x][0]]+sum[ch[x][1]];
}
void pushrev(int x)
{
rev[x]^=1,swap(ch[x][0],ch[x][1]);
}
void pushtag(int x)
{
tag[x]=1,sum[x]=val[x]=0;
}
void pushdown(int x)
{
int ls=ch[x][0],rs=ch[x][1];
if(rev[x]) pushrev(ls),pushrev(rs),rev[x]=0;
if(tag[x]) pushtag(ls),pushtag(rs),tag[x]=0;
}
bool notroot(int x)
{
return ch[fa[x]][0]==x||ch[fa[x]][1]==x;
}
void rotate(int x)
{
int y=fa[x],z=fa[y],k=check(x),w=ch[x][k^1];
if(notroot(y)) ch[z][check(y)]=x;
ch[x][k^1]=y,ch[y][k]=w;
if(w) fa[w]=y;
fa[x]=z,fa[y]=x;
pushup(y),pushup(x);
}
void all(int x)
{
if(notroot(x)) all(fa[x]);
pushdown(x);
}
void splay(int x)
{
all(x);
for(int y;notroot(x);rotate(x))
if(notroot(y=fa[x]))
rotate(check(x)^check(y)?x:y);
pushup(x);
}
void access(int x)
{
for(int y=0;x;y=x,x=fa[x])
splay(x),ch[x][1]=y,pushup(x);
}
void makeroot(int x)
{
access(x),splay(x),pushrev(x);
}
void split(int x,int y)
{
makeroot(x),access(y),splay(y);
}
void link(int x,int y)
{
makeroot(x),fa[x]=y;
}
void Link(int x,int y)
{
f[find(x)]=find(y),val[++tot]=1;
link(x,tot),link(tot,y);
}
int query(int x,int y)
{
split(x,y);
return sum[y];
}
int main()
{
read(n),read(m),read(qu),tot=n;
for(int i=1;i<=n;++i) f[i]=i;
for(int i=1;i<=m;++i)
{
read(e[i].x),read(e[i].y);
if(e[i].x>e[i].y) swap(e[i].x,e[i].y);
}
for(int i=1;i<=qu;++i)
{
scanf("%s",opt[i]),read(q[i].x),read(q[i].y);
if(q[i].x>q[i].y) swap(q[i].x,q[i].y);
if(opt[i][0]=='Z') mp[mk(q[i].x,q[i].y)]=1;
}
for(int i=1;i<=m;++i)
{
int x=e[i].x,y=e[i].y;
if(mp.count(mk(x,y))||find(x)==find(y)) continue;
mp[mk(x,y)]=1,Link(x,y);
}
for(int i=1;i<=m;++i)
{
int x=e[i].x,y=e[i].y;
if(mp.count(mk(x,y))) continue;
split(x,y),pushtag(y);
}
for(int i=qu;i;--i)
{
int x=q[i].x,y=q[i].y;
if(opt[i][0]=='Z')
{
if(find(x)==find(y)) split(x,y),pushtag(y);
else Link(x,y);
}
else
{
ans[i]=query(x,y);
if(find(x)!=find(y)) ans[i]=1;
}
}
for(int i=1;i<=qu;++i)
{
if(opt[i][0]=='P')
{
if(ans[i]) puts("NIE");
else puts("TAK");
}
}
return 0;
}
题解 洛谷 P6351 【[PA2011]Hard Choice】的更多相关文章
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 题解-洛谷P5217 贫穷
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...
- 题解 洛谷 P2010 【回文日期】
By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...
- 题解 洛谷P2158 【[SDOI2008]仪仗队】
本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...
随机推荐
- Elasticsearch的query phase和fetch phase
对于一次query查询到数据返回到客户端,经历了两个过程 query phase和fetch phase的过程 query phase 查询阶段 fetch phase 获取阶段. 1 qu ...
- 输入url后浏览器干了些什么(详解)
输入url后浏览器干了些什么(详解) DNS(Domain Name System, 域名系统) 解析 DNS解析的过程就是寻找哪台机器上有你真正需要的资源过程.但你在浏览器张红输入一个地址时,例如: ...
- 错误C2280 Union:尝试引用已删除的函数
在编写Union共用体类型的时候,写了如下代码,在第5行出现错误: #include <iostream> #include <string> using namespace ...
- dart快速入门教程 (7.2)
7.4.抽离类为单独文件 新建一个文件,单独存放一个类,例如:Person类抽离到person.dart文件中 class Person { final String name; final num ...
- python server端并发聊天
---------------------------server.py---------------------import socketserver class MyServer(socketse ...
- Solaris 10上Oracle 10g安装步骤图解
文章目录 1. 说明 2. 查看相关包 3. 添加用户和组 4. 设置oracle环境变量 5. 创建Oracle软件目录 6. 修改OS参数 7. 上传Oracle软件包并解压 8. 开始安装 9. ...
- JVM源码分析之深入分析Object类finalize()方法的实现原理
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 “365篇原创计划”第十篇. 今天呢!灯塔君跟大家讲: 深入分析Object类finalize()方法的实现原理 finalize 如果 ...
- JavaScript之DOM的增删改查
JavaScript的组成: 1. ECMAScript-语法规范 2. Web APIs(浏览器提供的工具) (1).BOM (浏览器对象模型) (2).DOM (文档对象模型) 今天就来讲讲DOM ...
- Python 简明教程 --- 22,Python 闭包与装饰器
微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 当你选择了一种语言,意味着你还选择了一组技术.一个社区. 目录 本节我们来介绍闭包与装饰器. 闭包与 ...
- 大厂前端带来css3动画transition的使用和介绍全新认识动画
CSS3中可以使用transition来做最简单动画效果,transition表示到一个元素的属性值发生变化时,我们可以看到页面元素从旧的属性慢慢变化为新的属性值的过程,这种效果不是立即变化的,而是体 ...