ReentrantLock以及AQS实现原理
什么是可重入锁?
ReentrantLock是可重入锁,什么是可重入锁呢?可重入锁就是当前持有该锁的线程能够多次获取该锁,无需等待。可重入锁是如何实现的呢?这要从ReentrantLock的一个内部类Sync的父类说起,Sync的父类是AbstractQueuedSynchronizer(后面简称AQS)。
什么是AQS?
AQS是JDK1.5提供的一个基于FIFO等待队列实现的一个用于实现同步器的基础框架,这个基础框架的重要性可以这么说,JCU包里面几乎所有的有关锁、多线程并发以及线程同步器等重要组件的实现都是基于AQS这个框架。AQS的核心思想是基于volatile int state这样的一个属性同时配合Unsafe工具对其原子性的操作来实现对当前锁的状态进行修改。当state的值为0的时候,标识改Lock不被任何线程所占有。
ReentrantLock锁的架构
ReentrantLoc的架构相对简单,主要包括一个Sync的内部抽象类以及Sync抽象类的两个实现类。上面已经说过了Sync继承自AQS,他们的结构示意图如下:

上图除了AQS之外,我把AQS的父类AbstractOwnableSynchronizer(后面简称AOS)也画了进来,可以稍微提一下,AOS主要提供一个exclusiveOwnerThread属性,用于关联当前持有该锁的线程。另外、Sync的两个实现类分别是NonfairSync和FairSync,由名字大概可以猜到,一个是用于实现公平锁、一个是用于实现非公平锁。那么Sync为什么要被设计成内部类呢?我们可以看看AQS主要提供了哪些protect的方法用于修改state的状态,我们发现Sync被设计成为安全的外部不可访问的内部类。ReentrantLock中所有涉及对AQS的访问都要经过Sync,其实,Sync被设计成为内部类主要是为了安全性考虑,这也是作者在AQS的comments上强调的一点。
AQS的等待队列
作为AQS的核心实现的一部分,举个例子来描述一下这个队列长什么样子,我们假设目前有三个线程Thread1、Thread2、Thread3同时去竞争锁,如果结果是Thread1获取了锁,Thread2和Thread3进入了等待队列,那么他们的样子如下:

AQS的等待队列基于一个双向链表实现的,HEAD节点不关联线程,后面两个节点分别关联Thread2和Thread3,他们将会按照先后顺序被串联在这个队列上。这个时候如果后面再有线程进来的话将会被当做队列的TAIL。
1)入队列
我们来看看,当这三个线程同时去竞争锁的时候发生了什么?
代码:
|
1
2
3
4
5
|
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt();} |
解读:
三个线程同时进来,他们会首先会通过CAS去修改state的状态,如果修改成功,那么竞争成功,因此这个时候三个线程只有一个CAS成功,其他两个线程失败,也就是tryAcquire返回false。
接下来,addWaiter会把将当前线程关联的EXCLUSIVE类型的节点入队列:
代码:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node;} |
解读:
如果队尾节点不为null,则说明队列中已经有线程在等待了,那么直接入队尾。对于我们举的例子,这边的逻辑应该是走enq,也就是开始队尾是null,其实这个时候整个队列都是null的。
代码:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } }} |
解读:
如果Thread2和Thread3同时进入了enq,同时t==null,则进行CAS操作对队列进行初始化,这个时候只有一个线程能够成功,然后他们继续进入循环,第二次都进入了else代码块,这个时候又要进行CAS操作,将自己放在队尾,因此这个时候又是只有一个线程成功,我们假设是Thread2成功,哈哈,Thread2开心的返回了,Thread3失落的再进行下一次的循环,最终入队列成功,返回自己。
2)并发问题
基于上面两段代码,他们是如何实现不进行加锁,当有多个线程,或者说很多很多的线程同时执行的时候,怎么能保证最终他们都能够乖乖的入队列而不会出现并发问题的呢?这也是这部分代码的经典之处,多线程竞争,热点、单点在队列尾部,多个线程都通过【CAS+死循环】这个free-lock黄金搭档来对队列进行修改,每次能够保证只有一个成功,如果失败下次重试,如果是N个线程,那么每个线程最多loop N次,最终都能够成功。
3)挂起等待线程
上面只是addWaiter的实现部分,那么节点入队列之后会继续发生什么呢?那就要看看acquireQueued是怎么实现的了,为保证文章整洁,代码我就不贴了,同志们自行查阅,我们还是以上面的例子来看看,Thread2和Thread3已经被放入队列了,进入acquireQueued之后:
- 对于Thread2来说,它的prev指向HEAD,因此会首先再尝试获取锁一次,如果失败,则会将HEAD的waitStatus值为SIGNAL,下次循环的时候再去尝试获取锁,如果还是失败,且这个时候prev节点的waitStatus已经是SIGNAL,则这个时候线程会被通过LockSupport挂起。
- 对于Thread3来说,它的prev指向Thread2,因此直接看看Thread2对应的节点的waitStatus是否为SIGNAL,如果不是则将它设置为SIGNAL,再给自己一次去看看自己有没有资格获取锁,如果Thread2还是挡在前面,且它的waitStatus是SIGNAL,则将自己挂起。
如果Thread1死死的握住锁不放,那么Thread2和Thread3现在的状态就是挂起状态啦,而且HEAD,以及Thread的waitStatus都是SIGNAL,尽管他们在整个过程中曾经数次去尝试获取锁,但是都失败了,失败了不能死循环呀,所以就被挂起了。当前状态如下:

锁释放-等待线程唤起
我们来看看当Thread1这个时候终于做完了事情,调用了unlock准备释放锁,这个时候发生了什么。
代码:
|
1
2
3
4
5
6
7
8
9
|
public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false;} |
解读:
首先,Thread1会修改AQS的state状态,加入之前是1,则变为0,注意这个时候对于非公平锁来说是个很好的插入机会,举个例子,如果锁是公平锁,这个时候来了Thread4,那么这个锁将会被Thread4抢去。。。
我们继续走常规路线来分析,当Thread1修改完状态了,判断队列是否为null,以及队头的waitStatus是否为0,如果waitStatus为0,说明队列无等待线程,按照我们的例子来说,队头的waitStatus为SIGNAL=-1,因此这个时候要通知队列的等待线程,可以来拿锁啦,这也是unparkSuccessor做的事情,unparkSuccessor主要做三件事情:
- 将队头的waitStatus设置为0.
- 通过从队列尾部向队列头部移动,找到最后一个waitStatus<=0的那个节点,也就是离队头最近的没有被cancelled的那个节点,队头这个时候指向这个节点。
- 将这个节点唤醒,其实这个时候Thread1已经出队列了。
还记得线程在哪里挂起的么,上面说过了,在acquireQueued里面,我没有贴代码,自己去看哦。这里我们也大概能理解AQS的这个队列为什么叫FIFO队列了,因此每次唤醒仅仅唤醒队头等待线程,让队头等待线程先出。
羊群效应
这里说一下羊群效应,当有多个线程去竞争同一个锁的时候,假设锁被某个线程占用,那么如果有成千上万个线程在等待锁,有一种做法是同时唤醒这成千上万个线程去去竞争锁,这个时候就发生了羊群效应,海量的竞争必然造成资源的剧增和浪费,因此终究只能有一个线程竞争成功,其他线程还是要老老实实的回去等待。AQS的FIFO的等待队列给解决在锁竞争方面的羊群效应问题提供了一个思路:保持一个FIFO队列,队列每个节点只关心其前一个节点的状态,线程唤醒也只唤醒队头等待线程。其实这个思路已经被应用到了分布式锁的实践中,见:Zookeeper分布式锁的改进实现方案。
ReentrantLock以及AQS实现原理的更多相关文章
- 扒一扒ReentrantLock以及AQS实现原理
提到JAVA加锁,我们通常会想到synchronized关键字或者是Java Concurrent Util(后面简称JCU)包下面的Lock,今天就来扒一扒Lock是如何实现的,比如我们可以先提出一 ...
- ReentrantLock 以及 AQS 实现原理
什么是可重入锁? ReentrantLock是可重入锁,什么是可重入锁呢?可重入锁就是当前持有该锁的线程能够多次获取该锁,无需等待.可重入锁是如何实现的呢?这要从ReentrantLock ...
- 透过 ReentrantLock 分析 AQS 的实现原理
对于 Java 开发者来说,都会碰到多线程访问公共资源的情况,这时候,往往都是通过加锁来保证访问资源结果的正确性.在 java 中通常采用下面两种方式来解决加锁得问题: synchronized 关键 ...
- 面经手册 · 第17篇《码农会锁,ReentrantLock之AQS原理分析和实践使用》
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 如果你相信你做什么都能成,你会自信的多! 千万不要总自我否定,尤其是职场的打工人.如 ...
- 并发编程学习笔记(5)----AbstractQueuedSynchronizer(AQS)原理及使用
(一)什么是AQS? 阅读java文档可以知道,AbstractQueuedSynchronizer是实现依赖于先进先出 (FIFO) 等待队列的阻塞锁和相关同步器(信号量.事件,等等)提供一个框架, ...
- AQS工作原理分析
AQS工作原理分析 一.大致介绍1.前面章节讲解了一下CAS,简单讲就是cmpxchg+lock的原子操作:2.而在谈到并发操作里面,我们不得不谈到AQS,JDK的源码里面好多并发的类都是通过Sy ...
- 从ReentrantLock看AQS (AbstractQueuedSynchronizer) 运行流程
从ReentrantLock看AQS (AbstractQueuedSynchronizer) 运行流程 概述 本文将以ReentrantLock为例来讲解AbstractQueuedSynchron ...
- AQS实现原理
AQS实现原理 AQS中维护了一个volatile int state(共享资源)和一个CLH队列.当state=1时代表当前对象锁已经被占用,其他线程来加锁时则会失败,失败的线程被放入一个FIFO的 ...
- ReentrantLock 与 AQS 源码分析
ReentrantLock 与 AQS 源码分析 1. 基本结构 重入锁 ReetrantLock,JDK 1.5新增的类,作用与synchronized关键字相当,但比synchronized ...
随机推荐
- 微信小程序预览Word文档
<view data-url="https://xxxcom/attachment/word.docx" data-type="docx" catchta ...
- Python实用笔记 (27)面向对象高级编程——使用枚举类
枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例.Python提供了Enum类来实现这个功能: from enum import Enum Month = Enum('Mon ...
- 如何在linux下安装tomcat服务器
linux作为现在比较主流的服务器操作系统,使用的机器广泛,安全稳定.tomcat作为应用容器当然可以有linux版本的tomcat.在linux上安装tomcat的方式也很简单,只需要运行脚本基本配 ...
- 【UVA11383】 Golden Tiger Claw 【二分图KM算法(板子)】
题目 题目传送门:https://www.luogu.com.cn/problem/UVA11383 分析 最近刚刚学了二分图,然后来了一个这样的题,看完题意之后,稍微想一想就能想出来是一个二分图,然 ...
- Linux服务搭之 - 消息队列(RabbitMQ)
本章主要目的是为了后续spring-cloud-bus做准备,讲述在Linux Centos7操作系统中搭建 RabbitMQ… - 什么是RabbitMQ RabbitMQ 是一个使用 Erlang ...
- web前端开发入门全套学习方法路径,兼职在家做网站也能月入上万!
前端学习路径 1.WEB前端快速入门 在本阶段,我们需要掌握 HTML 与 CSS 基础,当然,也包含 H5 和 C3 的新特性.这个部分内容非常简单,而且非常容易掌握.相信你也更愿意学习这个部分,毕 ...
- Git超详细用法,通俗易懂
创建本地仓库 和 远端共享仓库 直接下载安装包:Git下载地址 安装 git,查看 git 版本,git version 配置项目的 git 账号 git config --global user.n ...
- SCOI 2010 连续攻击游戏(贪心,图论)
SCOI 2010 连续攻击游戏 solution 直接就硬刚 我愿称贪心为暴力 因为题目中要求一定从小到大贪心,那么当前点的下标有能够选取的较大点,那么它一定可以和前面的一个较小点连接,所以可以直接 ...
- 记一次实际开发过程中遇到事务报错问题 Transaction synchronization is not active
一:问题场景 在一次http请求的后台接口中返回结果中出现了这个错误信息“Transaction synchronization is not active”,意思是“事务同步器没有激活”,但是被调用 ...
- postman 进阶技巧
cookie 清除缓存 code 生成接口自动化测试脚本 响应部分 pretty 响应以json或xml显示 raw 响应以文本显示 preview 以HTML网页行驶显示 断言 断言:用于判断接口请 ...