题目描述

BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. BESSIE也不想跑得太远,所以她想走最短的路经. 农场上一共有M (1 <= M <= 10,000)条路, 每条路连接两个用1..N(1 <= N <= 1000)标号的地点. 更方便的是,如果X>Y,则地点X的高度大于地点Y的高度. 地点N是BESSIE的牛棚;地点1是池塘. 很快, BESSIE厌倦了一直走同一条路.所以她想走不同的路,更明确地讲,她想找出K (1 <= K <= 100)条不同的路经.为了避免过度劳累,她想使这K条路经为最短的K条路经. 请帮助BESSIE找出这K条最短路经的长度.你的程序需要读入农场的地图, 一些从X_i到Y_i 的路经和它们的长度(X_i, Y_i, D_i). 所有(X_i, Y_i, D_i)满足(1 <= Y_i < X_i; Y_i < X_i <= N, 1 <= D_i <= 1,000,000).

输入格式

第1行: 3个数: N, M, 和K

第 2..M+1行: 第 i+1 行包含3个数 X_i, Y_i, 和 D_i, 表示一条下坡的路.

输出格式

第1..K行: 第i行包含第i最短路经的长度,或-1如果这样的路经不存在.如果多条路经有同样的长度,请注意将这些长度逐一列出.


题意就是,求出给定图的前k短的n到1的路径,题目中的高度关系指明了图是有向的。

所以我们可以用A*来求k短路。

设计估价函数f。秉持f永远不大于真实值的原则,我们可以建个反图,把所有点到终点的最短路作为估计值,这样无论k等于多少时真实值都不会小于估计值。

然后跑A*,每次终点被取出时就输出此时的距离。注意如果取出次数不足k要用-1补足。

时间复杂度上限为O(K * (N+M)log(N+M)),但由于启发式,远远达不到这个程度。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define maxn 1001
#define maxm 100001
using namespace std; struct graph{
struct edge{
int to,dis,next;
edge(){}
edge(const int &_to,const int &_dis,const int &_next){ to=_to,dis=_dis,next=_next; }
}e[maxm];
int head[maxn],k;
inline void init(){ memset(head,-1,sizeof head); }
inline void add(const int &u,const int &v,const int &w){ e[k]=edge(v,w,head[u]); head[u]=k++; }
}a,b; int f[maxn];
bool vis[maxn];
int n,m,s,K; struct set_elmt{
int id,dis;
set_elmt(){}
set_elmt(const int &_dis,const int &_id){ id=_id,dis=_dis; }
bool operator<(const set_elmt &x)const{ return dis>x.dis; }
};//Dijkstra的优先级 struct node{
int id,dis;
node(){}
node(const int &_dis,const int &_id){ id=_id,dis=_dis; }
bool operator<(const node &x)const{ return dis+f[id]>x.dis+f[x.id]; }
};//A*的优先级 inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
} inline void dijkstra(){
memset(f,0x3f,sizeof f);
priority_queue<set_elmt> q;
q.push(set_elmt(0,1)),f[1]=0; while(q.size()){
int u=q.top().id; q.pop();
if(vis[u]) continue; vis[u]=true;
for(register int i=b.head[u];~i;i=b.e[i].next){
int v=b.e[i].to;
if(f[v]>f[u]+b.e[i].dis) f[v]=f[u]+b.e[i].dis,q.push(set_elmt(f[v],v));
}
}
} inline void astar(){
priority_queue<node> q;
q.push(node(0,n));
while(q.size()){
int u=q.top().id,w=q.top().dis; q.pop();
if(u==1){ printf("%d\n",w); if(--K==0) return; }
for(register int i=a.head[u];~i;i=a.e[i].next){
int v=a.e[i].to;
q.push(node(w+a.e[i].dis,v));
}
}
while(K--) puts("-1");
} int main(){
a.init(),b.init();
n=read(),m=read(),K=read();
for(register int i=1;i<=m;i++){
int u=read(),v=read(),w=read();
a.add(u,v,w),b.add(v,u,w);//b为反图
}
dijkstra(),astar();
return 0;
}

[Usaco2008 Mar]牛跑步的更多相关文章

  1. Bzoj 1598: [Usaco2008 Mar]牛跑步 dijkstra,堆,K短路,A*

    1598: [Usaco2008 Mar]牛跑步 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 427  Solved: 246[Submit][St ...

  2. bzoj 1598: [Usaco2008 Mar]牛跑步 [k短路 A*] [学习笔记]

    1598: [Usaco2008 Mar]牛跑步 题意:k短路 ~~貌似A*的题目除了x数码就是k短路~~ \[ f(x) = g(x) + h(x) \] \(g(x)\)为到达当前状态实际代价,\ ...

  3. BZOJ_1598_[Usaco2008 Mar]牛跑步_A*

    BZOJ_1598_[Usaco2008 Mar]牛跑步_A* Description BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. B ...

  4. bzoj 1598: [Usaco2008 Mar]牛跑步 -- 第k短路,A*

    1598: [Usaco2008 Mar]牛跑步 Time Limit: 10 Sec  Memory Limit: 162 MB Description BESSIE准备用从牛棚跑到池塘的方法来锻炼 ...

  5. K短路 (A*算法) [Usaco2008 Mar]牛跑步&[Sdoi2010]魔法猪学院

    A*属于搜索的一种,启发式搜索,即:每次搜索时加一个估价函数 这个算法可以用来解决K短路问题,常用的估价函数是:已经走过的距离+期望上最短的距离 通常和Dijkstra一起解决K短路 BZOJ1598 ...

  6. 【BZOJ】1598: [Usaco2008 Mar]牛跑步

    [题意]给定有向图,边严格从大编号指向小编号,求前k短路.n<=1000,m<=10000,k<=100. [算法]归并+拓扑排序||A*求第k短路 [题解]因为此题自带拓扑序的特殊 ...

  7. BZOJ1598: [Usaco2008 Mar]牛跑步

    传送门 K短路,普遍的算法是采用AStar求解,先建立反向边跑一遍dij,或者spfa什么的.跑出反向边的距离就可以看为估价函数中的$h()$.设$dist$为当前已经走过的距离,那么$f(node) ...

  8. bzoj:1598: [Usaco2008 Mar]牛跑步

    Description BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. BESSIE也不想跑得太远,所以她想走最短的路经. 农场上一共有M ...

  9. 【bzoj1598】【 [Usaco2008 Mar]牛跑步】启发式搜索思路+spfa

    (上不了p站我要死了,侵权度娘背锅) 最近复习搜索,先从启发式搜索来吧. 感觉启发式搜索这玩意挺玄学的,先从其思想入手,做一道经典的K短路. Description BESSIE准备用从牛棚跑到池塘的 ...

  10. bzoj 1598: [Usaco2008 Mar]牛跑步【A*K短路】

    A*K短路模板,详见https://blog.csdn.net/z_mendez/article/details/47057461 算法流程: 把有向图全建成反向边,跑一遍所有点到t的最短路记为dis ...

随机推荐

  1. 超详细分析Bootloader到内核的启动流程(万字长文)

    @ 目录 Bootloader启动流程分析 Bootloader第一阶段的功能 硬件设备初始化 为加载 Bootloader的第二阶段代码准备RAM空间(初始化内存空间) 复制 Bootloader的 ...

  2. html 09-HTML5详解(三)

    09-HTML5详解(三) #Web 存储 随着互联网的快速发展,基于网页的应用越来越普遍,同时也变的越来越复杂,为了满足各种各样的需求,会经常性在本地存储大量的数据,传统方式我们以document. ...

  3. 使用php进行微信小程序图片安全验证

    想用到微信公众平台的图片识别系统,结果报错{"errcode":41005,"errmsg":"media data missing hint: [x ...

  4. 你只用do-while来实现循环?太浪费了!

    这是道哥的第010篇原创 目录 前言 在宏定义中的妙用 错误的宏定义 比较好的宏定义 另一个也不错的宏定义 在函数体中的妙用 函数功能:返回错误代码对应的错误字符串 函数功能:通过TCP Socket ...

  5. PSO 粒子群算法

    注:本人参考http://www.cnblogs.com/tiandsp/category/348031.html来实现的 算法步骤: 1.首先确定粒子个数与迭代次数. 2.对每个粒子随机初始化位置与 ...

  6. ASP.NET Web API运行提示:找到了与该请求匹配的多个操作的解决方法

  7. WebApplicationContext

    在Web应用中,我们会用到WebApplicationContext  用它来保存上下文信息 那么它set到ServletContext的过程是怎么样呢 1)通过WEB.XML中监听类 p.p1 { ...

  8. Buffer的重要属性 position/limit/capacity

    1 package nio; 2 3 import java.nio.IntBuffer; 4 5 /** 6 * Buffer的重要属性 position/limit/capacity 7 * po ...

  9. LInux学习笔记之常用命令

    以下命令主要是平时用到的命令,对于一些经常用到的,就收集资料,归纳一下. 指令目录: 1.yum命令: 2.wget命令: 3.tar命令: 4../configure,make,make insta ...

  10. 入门oj 5499: 讲话模式

    Description 每个人说话都有口头禅,现给出一个字符串,请求出其中出现次数最多的单词(不区分大小写). Input 输入一行,长度小于等于1048576的字符串输入至少包含一个字母或数字 Ou ...