题目描述

BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. BESSIE也不想跑得太远,所以她想走最短的路经. 农场上一共有M (1 <= M <= 10,000)条路, 每条路连接两个用1..N(1 <= N <= 1000)标号的地点. 更方便的是,如果X>Y,则地点X的高度大于地点Y的高度. 地点N是BESSIE的牛棚;地点1是池塘. 很快, BESSIE厌倦了一直走同一条路.所以她想走不同的路,更明确地讲,她想找出K (1 <= K <= 100)条不同的路经.为了避免过度劳累,她想使这K条路经为最短的K条路经. 请帮助BESSIE找出这K条最短路经的长度.你的程序需要读入农场的地图, 一些从X_i到Y_i 的路经和它们的长度(X_i, Y_i, D_i). 所有(X_i, Y_i, D_i)满足(1 <= Y_i < X_i; Y_i < X_i <= N, 1 <= D_i <= 1,000,000).

输入格式

第1行: 3个数: N, M, 和K

第 2..M+1行: 第 i+1 行包含3个数 X_i, Y_i, 和 D_i, 表示一条下坡的路.

输出格式

第1..K行: 第i行包含第i最短路经的长度,或-1如果这样的路经不存在.如果多条路经有同样的长度,请注意将这些长度逐一列出.


题意就是,求出给定图的前k短的n到1的路径,题目中的高度关系指明了图是有向的。

所以我们可以用A*来求k短路。

设计估价函数f。秉持f永远不大于真实值的原则,我们可以建个反图,把所有点到终点的最短路作为估计值,这样无论k等于多少时真实值都不会小于估计值。

然后跑A*,每次终点被取出时就输出此时的距离。注意如果取出次数不足k要用-1补足。

时间复杂度上限为O(K * (N+M)log(N+M)),但由于启发式,远远达不到这个程度。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define maxn 1001
#define maxm 100001
using namespace std; struct graph{
struct edge{
int to,dis,next;
edge(){}
edge(const int &_to,const int &_dis,const int &_next){ to=_to,dis=_dis,next=_next; }
}e[maxm];
int head[maxn],k;
inline void init(){ memset(head,-1,sizeof head); }
inline void add(const int &u,const int &v,const int &w){ e[k]=edge(v,w,head[u]); head[u]=k++; }
}a,b; int f[maxn];
bool vis[maxn];
int n,m,s,K; struct set_elmt{
int id,dis;
set_elmt(){}
set_elmt(const int &_dis,const int &_id){ id=_id,dis=_dis; }
bool operator<(const set_elmt &x)const{ return dis>x.dis; }
};//Dijkstra的优先级 struct node{
int id,dis;
node(){}
node(const int &_dis,const int &_id){ id=_id,dis=_dis; }
bool operator<(const node &x)const{ return dis+f[id]>x.dis+f[x.id]; }
};//A*的优先级 inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
} inline void dijkstra(){
memset(f,0x3f,sizeof f);
priority_queue<set_elmt> q;
q.push(set_elmt(0,1)),f[1]=0; while(q.size()){
int u=q.top().id; q.pop();
if(vis[u]) continue; vis[u]=true;
for(register int i=b.head[u];~i;i=b.e[i].next){
int v=b.e[i].to;
if(f[v]>f[u]+b.e[i].dis) f[v]=f[u]+b.e[i].dis,q.push(set_elmt(f[v],v));
}
}
} inline void astar(){
priority_queue<node> q;
q.push(node(0,n));
while(q.size()){
int u=q.top().id,w=q.top().dis; q.pop();
if(u==1){ printf("%d\n",w); if(--K==0) return; }
for(register int i=a.head[u];~i;i=a.e[i].next){
int v=a.e[i].to;
q.push(node(w+a.e[i].dis,v));
}
}
while(K--) puts("-1");
} int main(){
a.init(),b.init();
n=read(),m=read(),K=read();
for(register int i=1;i<=m;i++){
int u=read(),v=read(),w=read();
a.add(u,v,w),b.add(v,u,w);//b为反图
}
dijkstra(),astar();
return 0;
}

[Usaco2008 Mar]牛跑步的更多相关文章

  1. Bzoj 1598: [Usaco2008 Mar]牛跑步 dijkstra,堆,K短路,A*

    1598: [Usaco2008 Mar]牛跑步 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 427  Solved: 246[Submit][St ...

  2. bzoj 1598: [Usaco2008 Mar]牛跑步 [k短路 A*] [学习笔记]

    1598: [Usaco2008 Mar]牛跑步 题意:k短路 ~~貌似A*的题目除了x数码就是k短路~~ \[ f(x) = g(x) + h(x) \] \(g(x)\)为到达当前状态实际代价,\ ...

  3. BZOJ_1598_[Usaco2008 Mar]牛跑步_A*

    BZOJ_1598_[Usaco2008 Mar]牛跑步_A* Description BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. B ...

  4. bzoj 1598: [Usaco2008 Mar]牛跑步 -- 第k短路,A*

    1598: [Usaco2008 Mar]牛跑步 Time Limit: 10 Sec  Memory Limit: 162 MB Description BESSIE准备用从牛棚跑到池塘的方法来锻炼 ...

  5. K短路 (A*算法) [Usaco2008 Mar]牛跑步&[Sdoi2010]魔法猪学院

    A*属于搜索的一种,启发式搜索,即:每次搜索时加一个估价函数 这个算法可以用来解决K短路问题,常用的估价函数是:已经走过的距离+期望上最短的距离 通常和Dijkstra一起解决K短路 BZOJ1598 ...

  6. 【BZOJ】1598: [Usaco2008 Mar]牛跑步

    [题意]给定有向图,边严格从大编号指向小编号,求前k短路.n<=1000,m<=10000,k<=100. [算法]归并+拓扑排序||A*求第k短路 [题解]因为此题自带拓扑序的特殊 ...

  7. BZOJ1598: [Usaco2008 Mar]牛跑步

    传送门 K短路,普遍的算法是采用AStar求解,先建立反向边跑一遍dij,或者spfa什么的.跑出反向边的距离就可以看为估价函数中的$h()$.设$dist$为当前已经走过的距离,那么$f(node) ...

  8. bzoj:1598: [Usaco2008 Mar]牛跑步

    Description BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. BESSIE也不想跑得太远,所以她想走最短的路经. 农场上一共有M ...

  9. 【bzoj1598】【 [Usaco2008 Mar]牛跑步】启发式搜索思路+spfa

    (上不了p站我要死了,侵权度娘背锅) 最近复习搜索,先从启发式搜索来吧. 感觉启发式搜索这玩意挺玄学的,先从其思想入手,做一道经典的K短路. Description BESSIE准备用从牛棚跑到池塘的 ...

  10. bzoj 1598: [Usaco2008 Mar]牛跑步【A*K短路】

    A*K短路模板,详见https://blog.csdn.net/z_mendez/article/details/47057461 算法流程: 把有向图全建成反向边,跑一遍所有点到t的最短路记为dis ...

随机推荐

  1. Git中一个由readme.md文件引起的问题

    githup中建立远程仓库时,勾选了创建readme文件,本地仓库无法push,解决方法: https://blog.csdn.net/ashencode/article/details/816249 ...

  2. Python爬虫:爬取喜马拉雅音频数据详解

    前言 喜马拉雅是专业的音频分享平台,汇集了有声小说,有声读物,有声书,FM电台,儿童睡前故事,相声小品,鬼故事等数亿条音频,我最喜欢听民间故事和德云社相声集,你呢? 今天带大家爬取喜马拉雅音频数据,一 ...

  3. 悉数 Python 函数传参的语法糖

    TIOBE排行榜是程序开发语言的流行使用程度的有效指标,对世界范围内开发语言的走势具有重要参考意义.随着数据挖掘.机器学习和人工智能相关概念的风行,Python一举收获2018年年度语言,这也是Pyt ...

  4. PHP简单的计算位数的函数

    一个简单的PHP计算位数的函数: 1 <?php 2 //一个简单的计算字符串有长度的函数 3 #开始定义函数 4 function count_digit($number){ 5 $count ...

  5. html嵌入腾讯视频的方法

    1.首先我们从腾讯视频网站上找到一个视频网页的连接,格式是这样的 https://v.qq.com/x/page/b0136et5ztz.html 上面我标红色的是视频的vid 2.我们把vid放到接 ...

  6. C#中Newtonsoft.Json 序列化和反序列化 时间格式

    步骤 引用 using Newtonsoft.Json; using Newtonsoft.Json.Converters; 格式配置 IsoDateTimeConverter timeFormat ...

  7. Windows7里面怎么实现FTP服务功能

    1.安装FTP服务 点击:计算机 -->属性 --> 控制面板主页 --> 程序 --> 打开或关闭Windows功能 2. 调出管理工具 操作: 鼠标点击工具栏,选择属性,选 ...

  8. [.NET] WCFDataService项目host到IIS上碰到的一个问题:数据库未能打开

    今天在尝试重现OP一个问题的,遇到了一个新的问题. 项目坏境: WCF Data Service 5.6 Entity Framewrok 5(不用6的原因时要重新配置WCF项目) SQL Serve ...

  9. 01 . GitLab简介及环境部署

    GitLab简介 最初,该产品名为GitLab,是完全免费的开源软件,按照MIT许可证分发. 2013年7月,产品被拆分为:GitLabCE(社区版)和GitLabEE(企业版),当时,GitLabC ...

  10. 【mysql】- Expalin篇

    简介 id:在一个大的查询语句中每个 SELECT 关键字都对应一个唯一的id 与查询优化器有关,假如被优化过,那么可能是上下两个的id都是一样的 select_type:SELECT 关键字对应的那 ...