AcWing 329. 围栏障碍训练场
大型补档计划
考虑模拟这个过程。
\(f[i][0 / 1]\) 表示从第 \(i\) 个围栏的 左/右端点开始往下走,走到原点的最小花费。
转移很容易想到,就是考虑找到一个往下走第一个碰到的围栏 \(j (j < i)\) (若没有可以直接走到原点)。
然后 \(f[i][0 / 1] = min(f[j][0 / 1] + d_{相对距离})\)。考虑快速找到往下走最先遇到的围栏,就是一个线段覆盖动态问题,用线段树维护即可。
#include <cstdio>
#include <iostream>
using namespace std;
const int N = 30005, S = 200005, P = 100001;
typedef long long LL;
int n, m = P * 2, s, L[N], R[N], id[S << 2];
LL f[N][2];
int query(int p, int l, int r, int x) {
if (l == r) return id[p];
int mid = (l + r) >> 1;
if (x <= mid) return max(id[p], query(p << 1, l, mid, x));
else return max(id[p], query(p << 1 | 1, mid + 1, r, x));
}
void change(int p, int l, int r, int x, int y, int v) {
if (x <= l && r <= y) { id[p] = v; return; }
int mid = (l + r) >> 1;
if (x <= mid) change(p << 1, l, mid, x, y, v);
if (mid < y) change(p << 1 | 1, mid + 1, r, x, y, v);
}
int main() {
scanf("%d%d", &n, &s); s += P;
L[0] = R[0] = P;
for (int i = 1; i <= n; i++) {
scanf("%d%d", L + i, R + i); L[i] += P, R[i] += P;
int Lv = query(1, 1, m, L[i]), Rv = query(1, 1, m, R[i]);
f[i][0] = min(f[Lv][0] + abs(L[Lv] - L[i]), f[Lv][1] + abs(R[Lv] - L[i]));
f[i][1] = min(f[Rv][0] + abs(L[Rv] - R[i]), f[Rv][1] + abs(R[Rv] - R[i]));
change(1, 1, m, L[i], R[i], i);
}
printf("%d\n", min(f[n][0] + abs(L[n] - s), f[n][1] + abs(R[n] - s)));
return 0;
}
AcWing 329. 围栏障碍训练场的更多相关文章
- Acwing P298 围栏
Analysis ①首先将所有粉刷匠,按照必须刷的小木块Si从小到大排序. 上面这个操作为了保证我们可以顺序处理. ②我们可以设f[i][j]表示为,前i个粉刷匠,刷了前i个木块.可以有些木块选择不刷 ...
- AcWing 298. 围栏 (POJ1821)
标签(空格分隔): dp 单调队列优化 题目描述 有N块木板从左到右排成一行,有M个工匠对这些木板进行粉刷,每块木板至多被粉刷一次. 第 i 个木匠要么不粉刷,要么粉刷包含木板 \(S_i\) 的,长 ...
- csp-s 考前刷题记录
洛谷 P2615 神奇的幻方 洛谷 P2678 跳石头 洛谷 P1226 [模板]快速幂||取余运算 洛谷 P2661 信息传递 LOJ P10147 石子合并 LOJ P10148 能量项链 LOJ ...
- Acwing:102. 最佳牛围栏(前缀和 + 二分)
农夫约翰的农场由 NN 块田地组成,每块地里都有一定数量的牛,其数量不会少于1头,也不会超过2000头. 约翰希望用围栏将一部分连续的田地围起来,并使得围起来的区域内每块地包含的牛的数量的平均值达到最 ...
- AcWing 102. 最佳牛围栏
农夫约翰的农场由 N 块田地组成,每块地里都有一定数量的牛,其数量不会少于1头,也不会超过2000头. 约翰希望用围栏将一部分连续的田地围起来,并使得围起来的区域内每块地包含的牛的数量的平均值达到最大 ...
- AcWing 309. 装饰围栏
题目链接 这道题与下一章的数位\(dp\)解题思路十分一致. 把寻找答案变成按位(并且是字典序从小到大)枚举当前这一位可以填的情况. 通过\(dp\)预处理的信息告诉我们可行性,就可以把答案紧逼到一个 ...
- Acwing-102-最佳牛围栏(二分,实数)
链接: https://www.acwing.com/problem/content/104/ 题意: 农夫约翰的农场由 N 块田地组成,每块地里都有一定数量的牛,其数量不会少于1头,也不会超过200 ...
- 跨越语言的障碍:C++/CLI 调用 C#
首先我想投诉一下博客园首页右边栏的广告..最近总是出现很恐怖的整容脸的广告.真的是吓坏了.=.=大家有同感吗? 博客园前一阵子掀起了语言的广泛讨论,事实上语言的争执在整个程序员圈子也没有停止过.以我个 ...
- 创伤后应激障碍(PTSD)
创伤后应激障碍(Post Traumatic Stress Disorder,PTSD)又称延迟性心因性反应(Delayed Psychogenic Reaction),是由应激性事件或处境而引起的延 ...
随机推荐
- gdb调试入门(下)
GDB调试主要包括: 1.查看运行时数据 2.程序错误 3.gdb调试逻辑错误 4.gdb调试段错误 5.core文件调试 一.查看运行时数据 1.print 查看变量值 2.ptype 变量: 查看 ...
- python实战GUI界面+mysql
前言 前面用tkinter做了一个巨丑的GUI界面,今天想把它变漂亮起来,重新找回page做了一个界面,它也是基于tkinter开发的所见即所得的界面编辑器,前面因为代码搞不明白没用上,现在重新研究一 ...
- MySQL 连接为什么挂死了?
摘要:本次分享的是一次关于 MySQL 高可用问题的定位过程,其中曲折颇多但问题本身却比较有些代表性,遂将其记录以供参考. 一.背景 近期由测试反馈的问题有点多,其中关于系统可靠性测试提出的问题令人感 ...
- MFC常用函数
1.MFC的常用函数(只是找了些经常使用的,这里没有的可以CSDN查找,不需要都记住,经常使用自动就会记得) 1)GetDlgItemText(ID ,str)作用: 对话框中获取文本第一个参数为要获 ...
- hive显示列名
查询时显示列名:hive> set hive.cli.print.header;hive.cli.print.header=falsehive> set hive.cli.print.he ...
- 精尽MyBatis源码分析 - SQL执行过程(二)之 StatementHandler
该系列文档是本人在学习 Mybatis 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释(Mybatis源码分析 GitHub 地址.Mybatis-Spring 源码分析 GitHub ...
- CorelDRAW复制及镜面反转对象
复制的设计都是由简单的图案和基础的操作堆砌而成的,如何恰当地使用这些基础操作,就是各位新学者要格外注意的地方. 这次我们介绍CorelDRAW中的复制和镜面操作. 一.复制 1.复制单个对象 使用Co ...
- Word2 word输入公式+文字转表格
1.word中输入 =rand() -点击回车键-会随机生成一段文字-可用作排版练习/虚拟的文字排版设计 ##也可以为=rand(2,3)等,括号里可以随即填写其他数字,最后生成文字字数等不一样 2. ...
- k8s 自动伸缩 pod(HPA)
上一篇简单说了一下使用 kubeadm 安装 k8s.今天说一下 k8s 的一个神奇的功能:HPA (Horizontal Pod Autoscaler). HPA 依赖 metrics-server ...
- [GIT]获取git最新的tag
背景 公司前端项目在Jenkins中打包,每次打包需要将新tag回推到仓库中.但是打包失败后如果不删除tag的话下次打包就会失败,需要手动删除,所以在Jenkinsfile中就需要在打包失败时自动删除 ...